Greater Bay Area Topology Conference 2025
The theme of GBATC2025 is algebraic topology and geometric topology, aiming to promote exchanges and collaborations among people in these two fields.
The organizers gratefully acknowledge the support by South China Normal University, and National Natural Science Foundation of China.
Invited Speakers
(hint: click bolded talk titles to show abstracts)
苏阳, 中科院数学所
自复叠流形在环面上的纤维化 (Self-covering, finiteness, and fibering over a circle)
一个流形称为是自复叠的,如果它与自身的一个非平凡复叠同胚或同伦等价。环面是最简单的例子。对于具有交换基本群的自复叠闭流形,我们研究了它是否可以作为环面上的纤维丛的问题。在不同条件下,既得到了正面的结果,也发现了反例。这是和秦理真,王博潼合作的工作。于立, 南京大学
On simplicial complexes with maximal total Betti number and total bigraded Betti number
The total Betti number (i.e. the sum of all the Betti numbers) of a space measures the topological complexity of the space and plays important roles in many theories in mathematics. In this talk, we first classify those simplicial complexes with a given number of vertices that have the maximal total Betti number. Then we study similar problems for the sum of bigraded Betti numbers. It is known that the sum of bigraded Betti numbers of a simplicial complex K with m vertices is bounded from below by $2^{m-dim(K)-1}$. We discuss the classification of all the simplicial complexes with m vertices that have the maximal or the minimal sum of bigraded Betti numbers, respectively.陈波, 华中科技大学
On the homology description of equivariant bordism groups of n+1 dimensional $\mathbb{Z}_2^n$-manifolds with isolated fixed points set
We construct a chain complex $\mathfrak{B}$ based on a double complex derived from the universal complex $X(\mathbb{Z}_2^n)$. It is shown that $\mathfrak{B}$ has a nontrivial homology only in degree $n-2$, which is isomorphic to the equivariant unoriented bordism group $\mathcal{Z}_{n+1}(\mathbb{Z}_2^n)$ of all $(n+1)$-dimensional smooth closed $\mathbb{Z}_2^n$-manifolds with isolated fixed points. By analyzing the spectral sequence of $\mathfrak{B}$, we derive a dimension formula for $\mathcal{Z}_{n+1}(\mathbb{Z}_2^n)$ as a $\mathbb{Z}_2$-vector space, which agrees with a recent result for $n=3$.陈亮, 东北师范大学
On curvatures of singular mixed-type surfaces in Lorentz-Minkowski 3-space
We embark on an exploration of the differential geometric properties of singular mixed-type surfaces in Lorentz-Minkowski 3-space. Generally speaking, a mixed-type surface is defined as a connected regular surface that features non-empty sets of spacelike and timelike points. To facilitate our study, we introduce a valuable tool known as the modified frame on the surface. As a result, we reveal the behavior of the Gaussian curvature and the mean curvature of the singular mixed-type surface at not only lightlike points but also singular points.朱中坚, 温州大学
Homotopy types of $(2k-1)$-sphere bundles over $2k$-sphere
The classification problem of sphere bundles over spherical spaces, in terms of homotopy and homeomorphism, is a classical topic in the classification of manifolds. It plays an important role in topology and geometry. For example, Milnor showed that the total spaces of $S^3$-bundles over $S^4$ with Euler class ±1 are manifolds homeomorphic to $S^7$ but not always diffeomorphic to it. In this talk I will introduce our recent work on classifying the homotopy types of the total space of $(2k-1)$-sphere bundles (fibrations) over $2k$-sphere. These are joint works with Professor Jianzhong Pan.郑芳婷, 西交利物浦大学
Discrete embeddings of hyperbolic groups with Pontryagin surfaces as boundaries
In this talk, I will exhibit some convex cocompact, discrete subgroups $\Gamma_2$ and $\Gamma_3$ in the isometry group of 5-dimensional hyperbolic space H^5, whose limit sets are the index-2 and index-3 Pontryagin surfaces $\Pi_2$ and $\Pi_3$, respectively. This result yields new, distinct topological types of limit sets for higher-dimensional Kleinian groups. This is joint work with Jiming Ma.李平, 复旦大学
The compactification of homology cells, Fujita's conjectures and the complex projective spaces
Hirzebruch在1954年的问题集中有两个问题关心复欧式空间的紧化和复射影空间的唯一性。Takao Fujita在1980年这两个问题加强成三个密切相关的猜想。在此报告中,我们将回顾这些历史并讲述近期的一些进展。此报告中的部分工作是与Thomas Peternell合作的。古星, 西湖大学
Topological complexity of enumerative problems in algebraic geometry
Typical enumerative problems in algebraic geometry includes finding the d roots of a generic polynomial in one variable of degree $d$, and finding the $27$ lines on a smooth cubic surface. We introduce the concept of topological complexity of enumerative problems, which is a positive integer that measures the least possible number of “branches” in the algorithms that solves an enumerative problem up to an $\varepsilon$ error. We are interested in the lower bounds of the topological complexity of enumerative problems. We introduce finite covering spaces associated to the enumerative problems and the concept of Schwarz genus of a covering space, which produces lower bounds of the topological complexity, and can be detected by cohomology. Finally, we present lower bounds of three enumerative problems. This is a joint work with Weiyan Chen.Schedule
周六,11月8日, 数学西楼111报告厅
8:40~9:30 | 苏阳(中国科学院) 自复叠流形在环面上的纤维化
9:30 茶歇与会议合影
10:00~10:50 | 于立(南京大学) On simplicial complexes with maximal total Betti number and total bigraded Betti number
10:00~10:50 | 陈波(华中科技大学) On the homology description of equivariant bordism groups of n+1 dimensional $\mathbb{Z}_2^n$-manifolds with isolated fixed points set
---12:00~14:30 | 午餐、午休
14:30~15:20 | 陈亮(东北师范大学) On curvatures of singular mixed-type surfaces in Lorentz-Minkowski 3-space
15:20~15:40 | 茶歇
15:40~16:30 | 朱中坚(温州大学) Homotopy types of $(2k-1)$-sphere bundles over $2k$-sphere
16:50~17:40 | 郑芳婷(西郊利物浦大学) Discrete embeddings of hyperbolic groups with Pontryagin surfaces as boundaries
18:00~ | 晚餐
周日,11月9日, 数学西楼111报告厅
9:30~10:20 | 李平(复旦大学) The compactification of homology cells, Fujita's conjectures and the complex projective space
10:50~11:40 | 古星(西湖大学) Topological complexity of enumerative problems in algebraic geometry
12:00~17:00 | 午餐、自由讨论
Local information
- 会议地点:华南师范大学(石牌校区)-数学科学学院-西楼111报告厅。
- 入住酒店:宜致美居酒店(电子科技大厦店),广州天河区,中山大道西65号,位于华南师范大学(石牌校区)正门东50米。
- 11.07~09晚餐地点为 华南师范大学陶园餐厅二楼, 11.08-09午餐为 华南师范大学沁园餐厅工作餐。
从酒店步行到华南师范大学数学学院西楼路线图, 全程200米,约3分钟:

Organizers
- Xiaoming Du, South China University of Technology
- Feifei Fan, South China Normal University
- Pengcheng Li, Great Bay University
- Hao Liang, Foshan University
- Dengpin Liu, Guilin University of Aerospace Technology
- Enxin Wu, Shantou University
- Heng Xie, Sun Yat-Sen University
- Mengjian Xu, Guangxi Normal University
- Pengcheng Xu, Guangdong University of Finance
- Hao Zhao, South China Normal University
- Yifei Zhu, Southern University of Science and Technology
会议联系人:
If you have any questions, comments or suggestions, please contact us at gba.topology@outlook.com
Participants
Updated Nov. 3, 2025:
- 曹聚鹏, 华南理工大学
- 陈波, 华中科技大学
- 陈亮, 东北师范大学
- 杜晓明, 华南理工大学
- 范飞飞, 华南师范大学
- 房冰, 河南师范大学
- 付妍, 南开大学
- 古星, 西湖大学
- 李鹏程, 大湾区大学
- 李平, 复旦大学
- 李彦霖, 杭州师范大学
- 梁灏, 佛山大学
- 林奕武, 广东金融学院
- 刘登品, 桂林航天工业学院
- 刘文琰, 华南农业大学
- 秦雨轩, 重庆理工大学
- 苏阳, 中科院数学所
- 童浥尘, 西湖大学
- 王格非, 北京大学
- 王炜飚, 中南大学
- 翁文, 华南师范大学
- 邬恩信, 汕头大学
- 谢传龙, 中山大学
- 谢恒, 中山大学
- 徐勐戬, 广西师范大学
- 徐鹏程, 广东金融学院
- 徐啸宇, 北京大学
- 阎昕明, 广东第二师范学院
- 杨海波, 南昌航空大学
- 杨会军, 河南大学
- 俞海波, 华南师范大学
- 于立, 南京大学
- 赵浩, 华南师范大学
- 郑芳婷, 西交利物浦大学
- 朱一飞, 南方科技大学
- 朱中坚, 温州大学
- 龙啸海, 华南师范大学
- 李世雄, 华南师范大学
- 何东旭, 华南师范大学
- 李宛怡, 华南师范大学