Simplicial Complexes with Extremal Total Betti Number and Total Bigraded Betti Number

Yu, Li

School of Mathematics, Nanjing University

Greater Bay Area Topology Conference 2025

South China Normal University, November 7-10, 2025

Content

- Introduction
- Main results
- Outline of the proof

This talk is based on a joint work with Pimeng Dai (arXiv:2407.19423).

Section 1

Introduction

Total Betti number

For a finite CW-complex X and a field \mathbb{F} , let

$$\beta_i(X; \mathbb{F}) := \dim_{\mathbb{F}} H_i(X; \mathbb{F}), \quad \widetilde{\beta}_i(X; \mathbb{F}) := \dim_{\mathbb{F}} \widetilde{H}_i(X; \mathbb{F}).$$

$$tb(X; \mathbb{F}) := \sum_{i} \beta_{i}(X; \mathbb{F})$$
 — total Betti number of X .

$$\widetilde{tb}(X;\mathbb{F}):=\sum_i\widetilde{eta}_i(X;\mathbb{F})$$
 — reduced total Betti number of $X.$

$$\chi(X) := \sum_{i} (-1)^{i} \beta_{i}(X; \mathbb{F})$$
 — Euler characteristic of X .

$$\widetilde{\chi}(X) := \sum_i (-1)^i \widetilde{\beta}_i(X; \mathbb{F})$$
 — reduced Euler characteristic of X .

The coefficient \mathbb{F} will be omitted if there is no ambiguity in the context.

Total Betti number

The total Betti number of a topological space plays an important role in many theories in geometry and topology.

ullet Weak Morse Inequality: for a closed smooth manifold M and a Morse function $f:M \to \mathbb{R}$,

$$\#$$
 critical points of $f \geq tb(M; \mathbb{Z}_2)$.

• Smith Inequality: for a prime integer p and a \mathbb{Z}_p -action on a finite CW-complex X, the fixed point set $X^{\mathbb{Z}_p}$ satisfies:

$$tb(X^{\mathbb{Z}_p}; \mathbb{Z}_p) \le tb(X; \mathbb{Z}_p).$$

• Halperin-Carlsson Conjecture: if a torus $T^k = (S^1)^k$ or a p-torus $(\mathbb{Z}_p)^k$ can act (almost) freely on a finite-dimensional CW-complex, then $tb(X;\mathbb{Q}) \geq 2^k$ or $tb(X;\mathbb{Z}_p) \geq 2^k$, respectively.

Simplicial Complex

Let K be a finite simplicial complex whose vertex set is

$$Ver(K) = [m] = \{1, 2, \cdots, m\}.$$

Each simplex σ of K is considered as a subset of [m].

Suppose $\dim(K) = d$.

The f-vector of K is $(f_0(K), f_1(K), \dots, f_d(K))$ where $f_i(K)$ is the number of i-simplices in K.

The β -vector of K over a field \mathbb{F} is

$$(\widetilde{\beta}_0(K;\mathbb{F}),\widetilde{\beta}_1(K;\mathbb{F}),\cdots,\widetilde{\beta}_d(K;\mathbb{F})).$$

Full subcomplex

For any subset $J \subseteq [m]$, let

 $K|_{J} =$ the full subcomplex of K obtained by restricting to J.

In particular, when $J=\varnothing$, $K|_J=\varnothing$ and define

$$\beta_i(\varnothing) = 0, \ \forall i \geqslant 0; \ \ \widetilde{\beta}_i(\varnothing) = \begin{cases} 1, & \text{if } i = -1; \\ 0, & \text{otherwise.} \end{cases}$$

Question 1

Question 1: For a positive integer m, which simplicial complexes have the maximum (reduced) total Betti number among all the simplicial complexes with m vertices?

When m = 1, 2, 3, the answer is just the discrete m points.

When m=4, the answer is either the discrete 4 points or the complete graph on 4 vertices.

A complete answer to Question 1 has been obtained by Björner and Kalai in 1988.

A theorem of Björner and Kalai

Theorem [Björner-Kalai 1988]

Let K be a simplicial complex with at most n+1 vertices. Then

$$|\widetilde{\chi}(K)| \leqslant \widetilde{tb}(K) \leqslant \binom{n}{\lfloor n/2 \rfloor}.$$

Moreover, the following conditions are equivalent:

- (i) $|\widetilde{\chi}(K)| = \binom{n}{\lfloor n/2 \rfloor}$,
- (ii) $\widetilde{tb}(K) = \binom{n}{[n/2]}$,
- (iii) K is the k-skeleton of an n-simplex, where k=n/2-1 if n is even and k=(n-1)/2 or k=(n-3)/2 if n is odd.

Remark: The proof of this Theorem uses a nontrivial operation called algebraic shifting of a simplicial complex and Sperner's theorem.

Question 2

Question 2: For each $0 \le d < m$, which d-dimensional simplicial complexes with m vertices have the maximum total Betti number among all the d-dimensional simplicial complexes with m vertices?

For a pair of integers (m, d), $0 \le d < m$, let

 $\Sigma(m)=$ the set of all simplicial complexes with vertex set [m].

 $\Sigma(m,d)=$ the set of all d-dimensional simplicial complexes with vertex set [m].

Question 1 and Question 2 are equivalent to determine the sets

$$\Sigma^{tb}(m) = \left\{ K \in \Sigma(m) \mid \widetilde{tb}(K) = \max_{L \in \Sigma(m)} \widetilde{tb}(L) \right\} \subseteq \Sigma(m).$$

$$\Sigma^{tb}(m,d) = \left\{ K \in \Sigma(m,d) \mid \widetilde{tb}(K) = \max_{L \in \Sigma(m,d)} \widetilde{tb}(L) \right\} \subseteq \Sigma(m,d).$$

Bigraded Betti numbers

For a simplicial complex $K \in \Sigma(m)$, the Stanley-Reisner ring of K over a commutative ring with unit R is

$$R[K] = R[v_1, \cdots, v_m]/\mathcal{I}_K$$

where \mathcal{I}_K is the ideal generated by all the square-free monomials $v_{i_1}\cdots v_{i_s}$ where $\{i_1,\cdots,i_s\}$ is not a simplex of K.

Bigraded Betti numbers

By the standard construction in homological algebra, we obtain a canonical algebra $\mathrm{Tor}_{R[v_1,\cdots,v_m]}(R[K],R)$, where R is considered as the trivial $R[v_1,\cdots,v_m]$ -module.

Moreover, there is a bigraded module structure on $\mathrm{Tor}_{R[v_1,\cdots,v_m]}(R[K],R)$

$$\operatorname{Tor}_{R[v_1, \dots, v_m]}(R[K], R) = \bigoplus_{i,j>0} \operatorname{Tor}_{R[v_1, \dots, v_m]}^{-i,2j}(R[K], R)$$

where $deg(v_i) = 2$ for each $1 \le i \le m$.

If R is a field \mathbb{F} , define

$$\beta^{-i,2j}(\mathbb{F}(K)) := \dim_{\mathbb{F}} \operatorname{Tor}_{\mathbb{F}[v_1,\cdots,v_m]}^{-i,2j}(\mathbb{F}[K],\mathbb{F})$$

called the bigraded Betti numbers of K with \mathbb{F} -coefficients.

Total bigraded Betti numbers

The total bigraded Betti number of K with \mathbb{F} -coefficients is

Main results

$$\widetilde{D}(K; \mathbb{F}) = \sum_{i,j} \beta^{-i,2j}(\mathbb{F}(K)) = \dim_{\mathbb{F}} \operatorname{Tor}_{\mathbb{F}[v_1, \dots, v_m]}(\mathbb{F}[K], \mathbb{F}).$$

The Hochster's formula tells us that

$$\beta^{-i,2j}(\mathbb{F}(K)) = \sum_{J \subseteq [m], |J|=j} \dim_{\mathbb{F}} \widetilde{H}_{j-i-1}(K|_J; \mathbb{F}).$$

So we can also express $\widetilde{D}(K;\mathbb{F})$ as

$$\widetilde{D}(K; \mathbb{F}) = \sum_{J \subseteq [m]} \widetilde{tb}(K|_J; \mathbb{F}).$$

Question 3

Introduction

0000000000000

Question 3: For each $0 \le d < m$, which simplicial complexes in $\Sigma(m,d)$ have the minimum total bigraded Betti number over a field \mathbb{F} among all the members in $\Sigma(m,d)$?

Such kind of simplicial complexes are called D-minimal over \mathbb{F} .

Theorem [Cao-Lü 2011, Ustinovsky 2011]

For any $K \in \Sigma(m,d)$ and any field \mathbb{F} , $\widetilde{D}(K;\mathbb{F}) \geqslant 2^{m-d-1}$.

A simplicial complex $K \in \Sigma(m,d)$ is called tight over a field \mathbb{F} if $\widetilde{D}(K;\mathbb{F})=2^{m-d-1}$.

Remark: A \widetilde{D} -minimal simplicial complex is not necessarily tight.

Question 4 and Question 5

Question 4: For a positive integer m, which simplicial complexes in $\Sigma(m)$ have the maximum total bigraded Betti numbers among all the members in $\Sigma(m)$?

Equivalently: For what $K \in \Sigma(m)$ does $\dim_{\mathbb{F}} \operatorname{Tor}_{\mathbb{F}[v_1, \dots, v_m]}(\mathbb{F}[K], \mathbb{F})$ reach the maximum?

Question 5: For each $0 \leqslant d < m$, which simplicial complexes in $\Sigma(m,d)$ have the maximum total bigraded Betti numbers among all the members in $\Sigma(m,d)$?

We can give a complete answer to Question 4. But we do not know the answer to Question 5.

Section 2

Main results

Some notations

For any $m\geq 1$, we use $\Delta^{[m]}$ to denote the (m-1)-dimensional simplex with vertex set [m].

So $\partial \Delta^{[m]}$ is a simplicial sphere of dimension m-2.

Moreover, for any $0 \leqslant k < d < m$,

- ullet let $\Delta^{[m]}_{(k)}$ denote the k-skeleton of $\Delta^{[m]}$;
- let $\Delta_{(k)}^{[m]}\langle d\rangle$ denote the minimal d-dimensional subcomplex of $\Delta^{[m]}$ that contains $\Delta_{(k)}^{[m]}$, which is unique up to simplicial isomorphism. Indeed, $\Delta_{(k)}^{[m]}\langle d\rangle$ is the union of $\Delta_{(k)}^{[m]}$ with a d-simplex.

Simplicial complexes with the maximal total Betti number in each dimension

We answer Question 2 in the following theorem.

Theorem 1 [Dai-Yu 2024]

The sets $\Sigma^{tb}(m,d)$ are classified as follows:

(i) If
$$d \leqslant \left[\frac{m}{2}\right] - 1$$
 or $d = m - 1$, then $\Sigma^{tb}(m, d) = \left\{\Delta^{[m]}_{(d)}\right\}$;

(ii) If
$$\left[\frac{m}{2}\right] \leqslant d \leqslant m-3$$
, then $\Sigma^{tb}(m,d) = \left\{\Delta^{[m]}_{\left(\left[\frac{m}{2}\right]-1\right)}\langle d\rangle\right\}$;

(iii) If
$$d = m - 2$$
,

$$\bullet \ \ \text{when} \ m \ \text{is odd,} \ \Sigma^{tb}(m,d) = \Big\{\Delta^{[m]}_{\left(\left[\frac{m}{2}\right]-1\right)}\langle d\rangle, \Delta^{[m]}_{\left(\left[\frac{m}{2}\right]\right)}\langle d\rangle\Big\};$$

• when
$$m$$
 is even, $\Sigma^{tb}(m,d) = \left\{ \Delta^{[m]}_{\left(\left[\frac{m}{2}\right]-1\right)} \langle d \rangle \right\}.$

Classification of tight simplicial complexes

We classify all the tight simplicial complexes in the following theorem.

Theorem 2 [Dai-Yu 2024]

A finite simplicial complex K is tight if and only if K is of the form $\partial \Delta^{[n_1]} * \cdots * \partial \Delta^{[n_k]}$ or $\Delta^{[r]} * \partial \Delta^{[n_1]} * \cdots * \partial \Delta^{[n_k]}$ for some positive integers n_1, \dots, n_k and r.

Note that by convention, $\partial \Delta^{[1]} = \emptyset$ and $K * \emptyset = K$.

Remark: If $K \in \Sigma(m, d)$ is tight, it is necessary that $\lceil \frac{m-1}{2} \rceil \leq d$.

The equality $\left\lceil \frac{m-1}{2} \right\rceil = d$ is achieved by $\partial \Delta^{[2]} * \partial \Delta^{[2]} * \cdots * \partial \Delta^{[2]}$ when m is even and by $\Delta^{[1]} * \partial \Delta^{[2]} * \partial \Delta^{[2]} * \cdots * \partial \Delta^{[2]}$ when m is odd.

Classification of tight simplicial complexes

So if $\left[\frac{m-1}{2}\right] \leq d \leq m-1$, the \widetilde{D} -minimal simplicial complexes are exactly all the tight simplicial complexes.

But when $\left[\frac{m-1}{2}\right]>d$, a $\widetilde{D}\text{-minimal simplicial complex in }\Sigma(m,d)$ is never tight.

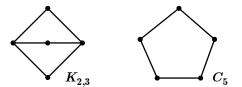


Figure 1: \widetilde{D} -minimal 1-dimensional simplicial complexes with 5 vertices

\widetilde{D} -minimal 1-dimensional simplicial complexes

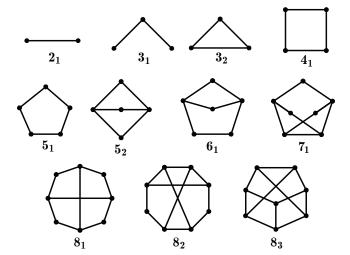


Figure 2: \widetilde{D} -minimal 1-dimensional simplicial complexes with ≤ 8 vertices

\widetilde{D} -minimal 1-dimensional simplicial complexes

•
$$\widetilde{D}(K_{2_1}) = 1$$
.

$$|\Sigma(2,1)| = 2$$

•
$$\widetilde{D}(K_{3_1}) = \widetilde{D}(K_{3_2}) = 2.$$

$$|\Sigma(3,1)| = 4$$

•
$$\widetilde{D}(K_{4_1}) = 4$$
.

$$|\Sigma(4,1)| = 11$$

•
$$\widetilde{D}(K_{5_1}) = \widetilde{D}(K_{5_2}) = 12 > 8.$$

$$|\Sigma(5,1)| = 34$$

•
$$\widetilde{D}(K_{6_1}) = 32 > 16$$
.

$$|\Sigma(6,1)| = 156$$

•
$$\widetilde{D}(K_{7_1}) = 82 > 32.$$

$$|\Sigma(7,1)| = 1044$$

•
$$\widetilde{D}(K_{8_1}) = \widetilde{D}(K_{8_2}) = \widetilde{D}(K_{8_3}) = 196 > 64.$$

$$|\Sigma(8,1)|=12346$$

It seems to us that there is no good way to describe all the \widetilde{D} -minimal simplicial complexes in $\Sigma(m,d)$ when $\left[\frac{m-1}{2}\right]>d$.

Simplicial complexes with the maximal total bigraded Betti number

We answer Question 4 in the following theorem. Let

$$g(m,d) = \sum_{j=d+1}^{m} {m \choose j} {j-1 \choose d}, \ 0 \le d < m.$$

Theorem 3 [Dai-Yu 2024]

If K is a simplicial complex with m vertices, then for any field \mathbb{F} ,

$$\widetilde{D}(K; \mathbb{F}) \leqslant g\left(m, \left\lceil \frac{m-1}{3} \right\rceil \right) + 1,$$

where the equality holds if and only if $K = \Delta_{\left(\left[\frac{m-1}{3}\right]-1\right)}^{[m]}$.

Section 3

Outline of the proof

Simplicial complexes with the maximal total bigraded Betti number

Theorem 3 [Dai-Yu 2024]

If K is a simplicial complex with m vertices, then for any field \mathbb{F} ,

$$\widetilde{D}(K; \mathbb{F}) \leqslant g\left(m, \left[\frac{m-1}{3}\right]\right) + 1,$$

where the equality holds if and only if $K = \Delta_{\lceil \lceil \frac{m-1}{2} \rceil - 1 \rceil}^{\lfloor m \rfloor}$.

$$g(m,d) = \sum_{j=d+1}^{m} {m \choose j} {j-1 \choose d}, \ 0 \le d < m.$$

Proof of Theorem 3

We can easily show that if $\widetilde{D}(K;\mathbb{F})$ reaches the maximum, then K must be invariant under any permutation of its vertices, i.e. K is the d-skeleton of $\Delta^{[m]}$ for some d.

By an elementary calculation, we obtain

$$\widetilde{D}(\Delta_{(d)}^{[m]}; \mathbb{F}) = \sum_{i=0}^{m-d-2} {m \choose m-i} {m-i-1 \choose d+1} + 1 = g(m, d+1) + 1.$$

Then Theorem 3 follows from the technical lemma below.

Lemma [Dai-Yu 2024]

For $0 \le d < m$, $g(m,d) = \sum_{j=d+1}^m {m \choose j} {j-1 \choose d}$ reaches the maximum when and only when $d = \left[\frac{m-1}{3}\right]$.

Classification of Tight simplicial complexes

Theorem 2 [Dai-Yu 2024]

A finite simplicial complex K is tight if and only if K is of the form $\partial \Lambda^{[n_1]} * \cdots * \partial \Lambda^{[n_k]}$ or $\Lambda^{[r]} * \partial \Lambda^{[n_1]} * \cdots * \partial \Lambda^{[n_k]}$

For any positive integers n_1, \dots, n_k and r, call the simplicial complex $\partial \Delta^{[n_1]} * \cdots * \partial \Delta^{[n_k]}$ a sphere join and call $\Delta^{[r]} * \partial \Delta^{[n_1]} * \cdots * \partial \Delta^{[n_k]}$ a simplex-sphere join.

Theorem [Yu-Masuda 2022]

Let K be a simplicial complex of dimension $n \geq 2$. Suppose that K satisfies the following two conditions:

- (a) K is an n-dimensional pseudomanifold,
- (b) the link of any vertex of K is a sphere join of dimension n-1, Then K is a sphere join.

Pseudomanifold

A simplicial complex K is called an n-dimensional pseudomanifold if the following conditions hold:

- (i) Every simplex of K is a face of some n-simplex of K (i.e. K is pure).
- (ii) Every (n-1)-simplex of K is the face of exactly two n-simplices of K.
- (iii) If σ and σ' are two n-simplices of K, then there is a finite sequence of *n*-simplices $\sigma = \sigma_0, \sigma_1, \dots, \sigma_k = \sigma'$ such that the intersection $\sigma_i \cap \sigma_{i+1}$ is an (n-1)-simplex for all $i=0,\ldots,k-1$.

In particular, any closed connected PL-manifold is a pseudomanifold.

Proof of Theorem 2

Lemma [Dai-Yu 2024]

Let K be a simplicial complex with m vertices. If K is tight, then

- (i) K is pure.
- (ii) For every simplex σ of K, $\operatorname{Link}_K \sigma$ is tight.
- (iii) If K is not connected, K must be S^0 .

Suppose K is a tight simplicial complex with m vertices. Then by the above lemma and the induction on m, the link $\operatorname{Link}_K v$ of every vertex v of K is either a sphere-join or a simplex-sphere join. This implies that K is a PL-manifold (with boundary).

Proof of Theorem 2

- Case 1: The link of every vertex of K is a sphere-join. Then K is a closed PL-manifold, hence a pseudomanifold. So K must be a sphere-join by the above lemma.
- Case 2: There exists a vertex v of K with the link $\operatorname{Link}_K v$ being a simplex-sphere join. We can prove that there exists another vertex $w \in K$ such that $K = w * (K \backslash w)$ and $K \backslash w$ is also tight.

By induction, $K \setminus w$ is a sphere-join or a simplex-sphere joint, then K is a simplex-sphere join.

Simplicial complexes with maximal total Betti number in each dimension

Theorem 1 [Dai-Yu 2024]

The sets $\Sigma^{tb}(m,d)$ are classified as follows:

(i) If
$$d\leqslant \left[\frac{m}{2}\right]-1$$
 or $d=m-1$, then $\Sigma^{tb}(m,d)=\left\{\Delta^{[m]}_{(d)}\right\}$;

(ii) If
$$\left[\frac{m}{2}\right] \leqslant d \leqslant m-3$$
, then $\Sigma^{tb}(m,d) = \left\{\Delta^{[m]}_{\left(\left[\frac{m}{2}\right]-1\right)}\langle d\rangle\right\}$;

(iii) If
$$d = m - 2$$
,

• when
$$m$$
 is odd, $\Sigma^{tb}(m,d) = \left\{ \Delta^{[m]}_{\left(\left[\frac{m}{2}\right]-1\right)} \langle d \rangle, \Delta^{[m]}_{\left(\left[\frac{m}{2}\right]\right)} \langle d \rangle \right\};$

• when
$$m$$
 is even, $\Sigma^{tb}(m,d) = \left\{ \Delta_{\left(\left[\frac{m}{2}\right]-1\right)}^{[m]} \langle d \rangle \right\}.$

Shifted simplicial complex

Definition — Shifted Simplicial Complex

A simplicial complex Γ with vertex set [m] is called *shifted* if for every simplex $\sigma = \{i_1, \dots, i_s\} \in \Gamma$ where $i_1 < \dots < i_s$, any $\{j_1, \dots, j_s\}$ with $j_1 < i_1, \dots, j_s < i_s$ and $j_1 < \dots < j_s$ is also a simplex of Γ .

A shifting operation is a map which assigns to every simplicial complex K a shifted simplicial complex $\Delta(K)$ with the same f-vector.

A well-known shifting operation, was introduced by Erdös, Ko and Rado in 1961, also called combinatorial shifting, which has been of great use in extremal set theory.

Algebraic Shifting of a simplicial complex

Later in 1984, another shifting operation was introduced by Kalai called algebraic shifting, which preserves both the f-vector and the β -vector of a simplicial complex.

Theorem [Kalai 1984, Björner-Kalai 1988]

Given a simplicial complex K on m vertices and a field $\mathbb F$, there exists a canonically defined shifted simplicial complex $\Delta=\Delta(K,\mathbb F)$ on [m] such that

$$f_i(\Delta) = f_i(K), \quad \widetilde{\beta}_i(\Delta; \mathbb{F}) = \widetilde{\beta}_i(K; \mathbb{F}), i \geqslant 0.$$

Ordering of simplices

Let $\{i_1,i_2,\ldots,i_k\}_{<}$ denotes an ordered set where $i_1< i_2<\ldots< i_k$. For two ordered sets $S=\{i_1,i_2,\ldots,i_k\}_{<}$ and $T=\{j_1,j_2,\ldots,j_k\}_{<}$ of the same size,

• the partial order is defined by:

$$S \leqslant_{\mathcal{P}} T \iff i_l \leqslant j_l \text{ for all } 1 \leqslant l \leqslant k;$$

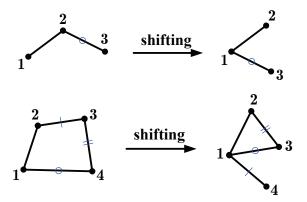
• the lexicographic order is defined by:

$$S \leqslant_{\mathcal{L}} T \iff S = T \text{ or } \min(S \Delta T) \in S$$
,

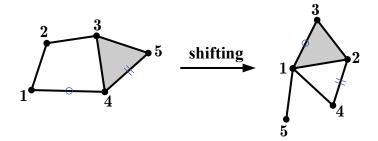
where $S \Delta T = (S \setminus T) \cup (T \setminus S)$ is the symmetric difference.

Example of shifting of a simplicial complex

Roughly speaking, algebraic shifting a simplicial complex is: starting from lower dimension to higher dimension, nudging all the simplices forward with respect to the lexicographic order.



Example of shifting of a simplicial complex



Remark: Algebraic shifting may not preserve the homotopy type of a simplicial complex and may not even induce a chain map.

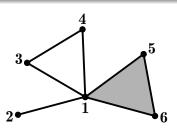
Near-cone

In fact, the shifted complex $\Delta(K)$ associated to K belongs to a slightly larger class of simplicial complexes called near-cones.

Definition — Near-Cone

A simplicial complex Δ with vertex set [m] is called a near-cone if for any simplex $S\in\Delta$ and $j\geq 2$,

if
$$1 \notin S$$
 and $j \in S$, then $(S \setminus j) \cup \{1\} \in \Delta$.



Property of Near-cone

For a near-cone Δ , define

$$B(\Delta) = \{ S \in \Delta \mid S \cup \{1\} \notin \Delta \}.$$

A very nice property of a near-cone Δ is: $\widetilde{tb}(\Delta) = |B(\Delta)|$.

Lemma [Björner-Kalai 1988]

If Δ is a near-cone on [m], then

- (i) every simplex $S \in B(\Delta)$ is maximal in Δ ,
- (ii) Δ is homotopy equivalent to a wedge of spheres

$$\Delta \simeq \bigvee_{0 \le i \le \dim(\Delta)} \bigvee_{f_i(B(\Delta))} S^i \implies \widetilde{tb}(\Delta) = |B(\Delta)|,$$

(iii) $B(\Delta)$ is a Sperner family of $\{2, \dots, m\}$.

Sperner's Theorem

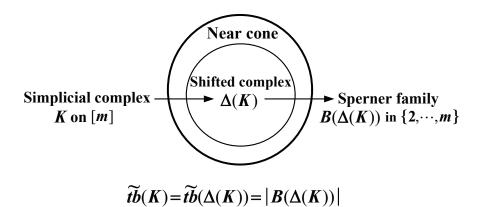
Definition — Sperner Family

Let X be a finite set. A *Sperner family* of X is a set \mathcal{F} of subsets of X that satisfies $A \nsubseteq B$ for distinct members of \mathcal{F} . Given a subset $Y \subseteq X$, a Sperner family of X over Y is a Sperner family \mathcal{F} of X where every member of \mathcal{F} has nonempty intersection with Y.

Theorem [Sperner 1928]

Let $\mathcal F$ be a Sperner family of subsets of a finite set X where |X|=n. Then $|\mathcal F|\leq {n\choose [n/2]}$. If n is even, the only Sperner family consisting of ${n\choose [n/2]}$ subsets of X is made up of all the $\frac{n}{2}$ -subsets of X. If n is odd, a Sperner family of size ${n\choose [n/2]}$ consists of either all the $\frac{1}{2}(n-1)$ -subsets or all the $\frac{1}{2}(n+1)$ -subsets of X.

Summary



Property of Near-cone

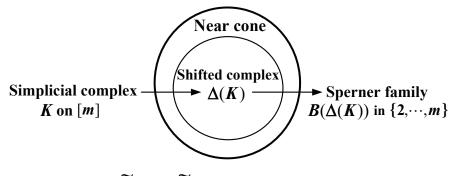
The following proposition tells us what kind of Sperner families on $\{2,\cdots,m\}$ are in the form of $B(\Delta)$ for some d-dimensional near-cone Δ on [m].

Proposition [Dai-Yu 2024]

Let \mathcal{F} be a Sperner family of $[m]\setminus\{1\}=\{2,\cdots,m\}$. The following statements are equivalent:

- (i) there exists a d-dimensional near-cone Δ with vertex set contained in [m], such that $B(\Delta) = \mathcal{F}$;
- (ii) there exists a subset $\{i_1, \dots, i_d\} \subseteq \{2, \dots, m\}$ such that \mathcal{F} is a Sperner family of $\{2, \dots, m\}$ over $\{2, \dots, m\} \setminus \{i_1, \dots, i_d\}$ and the order of each member of \mathcal{F} is no greater than d+1.

Summary



$$\widetilde{tb}(K) = \widetilde{tb}(\Delta(K)) = |B(\Delta(K))|$$

$$\frac{\dim(K) = d, \text{ assume}}{\{1, \dots, d+1\} \text{ is a simplex of } K} \implies \frac{B(\Delta(K)) \text{ is a Sperner family}}{\inf\{2, \dots, m\}} \text{ over } \underbrace{\{d+2, \dots, m\}}_{Y}$$

Sperner families with the maximal cardinality

Let X be a set with order $\lvert X \rvert = n.$ For a nonempty subset Y of X, let

C(n, X, Y) = the set of all subsets of X that have nonempty intersection with Y.

For any $i \geq 1$, let

 $C_i(n, X, Y)$ = the collection of sets in C(n, X, Y) of size i.

Sperner families with the maximal cardinality

Theorem [Lih 1980 + Griggs 1982]

Let X be a finite set of order n. The maximal possible cardinality of a Sperner family \mathcal{F} of X over a subset $Y \subseteq X$ with |Y| = k is $f(n,k) = \binom{n}{\lceil n/2 \rceil} - \binom{n-k}{\lceil n/2 \rceil}$. Moreover, $|\mathcal{F}| = f(n,k)$ if and only if \mathcal{F} is one of the following cases:

- (a) $C_{\lceil \frac{1}{\alpha} n \rceil}(n, X, Y)$ where $\lceil \cdot \rceil$ is the ceiling function;
- (b) $C_{\frac{1}{2}(n-1)}(n, X, Y)$, for odd n and $k \ge \frac{1}{2}(n+3)$;
- (c) $C_{\frac{1}{2}(n+2)}(n, X, Y)$, for even n and k = 1.

In particular, if $|\mathcal{F}| = f(n, k)$, every member in \mathcal{F} has the same order.

Remark: Not all Sperner families with the maximal cardinality in the above theorem are of the form $B(\Delta)$ for some near-cone Δ .

Proof of Theorem 1

• By an induction on the dimension d, we can prove:

(i) If
$$d \leqslant \left[\frac{m}{2}\right] - 1$$
 or $d = m - 1$, then $\Sigma^{tb}(m,d) = \left\{\Delta^{[m]}_{(d)}\right\}$;

 By figuring out all the possible near-cones corresponding to the Sperner families with the maximal cardinality in the above theorem, we obtain

(ii) If
$$\left[\frac{m}{2}\right] \leqslant d \leqslant m-3$$
, then $\Sigma^{tb}(m,d) = \left\{\Delta^{[m]}_{\left(\left[\frac{m}{2}\right]-1\right)}\langle d\rangle\right\}$;

(iii) If
$$d = m - 2$$
,

- $\bullet \ \ \text{when} \ m \ \text{is odd,} \ \Sigma^{tb}(m,d) = \Big\{ \Delta^{[m]}_{\left(\left\lceil\frac{m}{2}\right\rceil-1\right)} \langle d \rangle, \Delta^{[m]}_{\left(\left\lceil\frac{m}{2}\right\rceil\right)} \langle d \rangle \Big\};$
- when m is even, $\Sigma^{tb}(m,d) = \left\{ \Delta^{[m]}_{\left(\left\lceil \frac{m}{2} \right\rceil 1 \right)} \langle d \rangle \right\}.$

Thank you for your attention

November 8, 2025

South China Normal University, GuangZhou

46 / 46