Topological complexity of enumerative problems in algebraic geometry

Xing Gu, joint work with Weiyan Chen

Westlake University

guxing@westlake.edu.cn

South China Normal University

2025-11-09

Overview

- Backgrounds
- 2 The topological complexity of enumerative problems
- Finding lower bounds by pullbacks
- 4 The cohomology of PU(4)/K

Enumerative problems in algebraic geometry (over \mathbb{C}):

- a generic degree d-polynomial has d roots;
- a generic quartic plane curve has 24 inflection points;
- a smooth quartic plane curve has 28 bitangent lines;
- a smooth cubic curve contains 27 lines;
- **5** ...

Enumerative problems in algebraic geometry (over \mathbb{C}):

- **1** a generic degree *d*-polynomial has *d* roots;
- 2 a generic quartic plane curve has 24 inflection points;
- a smooth quartic plane curve has 28 bitangent lines;
- a smooth cubic curve contains 27 lines;
- **⑤** ...

A positive integer, which we call the *topological complexity* may be assigned to each of the enumerative problems in algebraic geometry.

In 1987, S. Smale [5] considered the topological complexity of finding the d roots of a generic degree-d polynomial:

Poly(d)

Given a generic complex polynomial of degree d, leading coefficients 1 and $\epsilon > 0$, Find all roots of f within ϵ .

Following Smale, by an *algorithm* we mean a finite rooted tree consisting of a root for the input, leaves for the output, and internal nodes of the following two types:

computation nodes and branching nodes .

Following Smale, by an *algorithm* we mean a finite rooted tree consisting of a root for the input, leaves for the output, and internal nodes of the following two types:

computation nodes $\stackrel{\downarrow}{\downarrow}$ and branching nodes $\stackrel{\downarrow}{\swarrow}$.

The topological complexity of enumerative problems of an algorithm is the number of branching nodes in the tree.

Following Smale, by an *algorithm* we mean a finite rooted tree consisting of a root for the input, leaves for the output, and internal nodes of the following two types:

computation nodes $\stackrel{\mbox{\scriptsize ψ}}{\downarrow}$ and branching nodes $\stackrel{\mbox{\scriptsize ψ}}{\swarrow}$.

The *topological complexity of enumerative problems* of an algorithm is the number of branching nodes in the tree.

The topological complexity of a problem P is the minimum of the topological complexity of any algorithm solving P.

Following Smale, by an *algorithm* we mean a finite rooted tree consisting of a root for the input, leaves for the output, and internal nodes of the following two types:

computation nodes $\stackrel{\downarrow}{\downarrow}$ and branching nodes $\stackrel{\downarrow}{\swarrow}$.

The *topological complexity of enumerative problems* of an algorithm is the number of branching nodes in the tree.

The topological complexity of a problem P is the minimum of the topological complexity of any algorithm solving P.

Smale [5] first proved a lower bound for the topological complexity of the problem of finding roots of a polynomial f(z) = 0.

Following Smale, by an *algorithm* we mean a finite rooted tree consisting of a root for the input, leaves for the output, and internal nodes of the following two types:

computation nodes $\stackrel{\mbox{\scriptsize ψ}}{\downarrow}$ and branching nodes $\stackrel{\mbox{\scriptsize ψ}}{\swarrow}$.

The *topological complexity of enumerative problems* of an algorithm is the number of branching nodes in the tree.

The topological complexity of a problem P is the minimum of the topological complexity of any algorithm solving P.

Smale [5] first proved a lower bound for the topological complexity of the problem of finding roots of a polynomial f(z) = 0. Smale's lower bounds were later improved by Vassiliev [6], De Concini-Procesi-Salvetti [3], and Arone [1].

Similar questions may be asked about solutions to enumerative problems for high-dimensional objects such as curves and surfaces, which is mostly unknown.

Similar questions may be asked about solutions to enumerative problems for high-dimensional objects such as curves and surfaces, which is mostly unknown. A first step in this direction is the work [2] by Weiyan Chen and Zheyan Wan, concerning the topological complexity of finding inflection points on cubic plane curves.

Similar questions may be asked about solutions to enumerative problems for high-dimensional objects such as curves and surfaces, which is mostly unknown. A first step in this direction is the work [2] by Weiyan Chen and Zheyan Wan, concerning the topological complexity of finding inflection points on cubic plane curves. In this talk, we consider **the lower bounds of the topological complexity** of the following problems:

- **Line**(ϵ): Given any cubic surface defined by a homogeneous polynomial F(x, y, z, w) of degree 3, find all of its 27 lines (I_1, \dots, I_{27}) within ϵ .
- **Bitangent**(ϵ): Given any quartic curve defined by a homogeneous polynomial F(x, y, z) of degree 4, find all of its 28 bitangent lines (I_1, \dots, I_{28}) within ϵ .
- **Flex**(ϵ): Given any quartic curve defined by a homogeneous polynomial F(x, y, z) of degree 4, find all of its 24 inflection points (p_1, \dots, p_{28}) within ϵ .

Theorem

When ϵ is sufficiently small, we have

- **1** the topological complexity of the problem Line(ϵ) is at least 15,
- **2** the topological complexity of the problem $Bitangent(\epsilon)$ is at least 8,
- **1** the topological complexity of the problem $Flex(\epsilon)$ is at least 8.

A General Question

How complex it is to find the roots of a polynomial?

A General Question

How complex it is to find the roots of a polynomial?

The answer depends on what "find" means.

• find = express in radicals complexity \sim (solvability of) the Galois group

A General Question

How complex it is to find the roots of a polynomial?

The answer depends on what "find" means.

- find = express in radicals complexity \sim (solvability of) the Galois group
- find = express in algebraic functions (Hilbert's 13th problem) complexity \sim resolvent degrees (Brauer 1975)

A General Question

How complex it is to find the roots of a polynomial?

The answer depends on what "find" means.

- find = express in radicals complexity ~ (solvability of) the Galois group
- find = express in algebraic functions (Hilbert's 13th problem) complexity \sim resolvent degrees (Brauer 1975)
- find = approximate using an algorithm complexity ~ topological complexity (Smale 1987)

There are various parameter spaces associated to the three enumerative problems. For instance, for the problem $Line(\epsilon)$, consider

 $B_{\text{line}} := \{ \text{nonsingular homogeneous cubic polynomials } F(x, y, z, w) \} / \mathbb{C}^{\times}$ $E_{\text{line}} := \{ (F, l_1, \dots, l_{27}) : l_i \text{ 's are the 27 lines on the cubic surface } F \in B_{\text{line}} \}$

The space B_{line} is an open submanifold of $\mathbb{C}P^{19}$ consisting of all homogeneous cubic polynomials in four variables.

There are various parameter spaces associated to the three enumerative problems. For instance, for the problem $Line(\epsilon)$, consider

 $B_{\text{line}} := \{ \text{nonsingular homogeneous cubic polynomials } F(x, y, z, w) \} / \mathbb{C}^{\times}$ $E_{\text{line}} := \{ (F, l_1, \dots, l_{27}) : l_i \text{ 's are the 27 lines on the cubic surface } F \in B_{\text{line}} \}$

The space B_{line} is an open submanifold of $\mathbb{C}P^{19}$ consisting of all homogeneous cubic polynomials in four variables.

The projection $E_{\text{line}} \to B_{\text{line}}$ given by $(F, l_1, \dots, l_{27}) \mapsto F$ is a normal S_{27} -cover, where S_{27} acts on E_{line} by permuting the ordering of the 27 lines.

There are various parameter spaces associated to the three enumerative problems. For instance, for the problem $Line(\epsilon)$, consider

$$B_{\text{line}} := \{ \text{nonsingular homogeneous cubic polynomials } F(x, y, z, w) \} / \mathbb{C}^{\times}$$

 $E_{\text{line}} := \{ (F, l_1, \dots, l_{27}) : l_i \text{ 's are the 27 lines on the cubic surface } F \in B_{\text{line}} \}$

The space B_{line} is an open submanifold of $\mathbb{C}P^{19}$ consisting of all homogeneous cubic polynomials in four variables.

The projection $E_{\text{line}} \to B_{\text{line}}$ given by $(F, l_1, \dots, l_{27}) \mapsto F$ is a normal S_{27} -cover, where S_{27} acts on E_{line} by permuting the ordering of the 27 lines.

Similarly, we have a S_{28} -cover $E_{\rm btg} \to B_{\rm btg}$ associated to the problem **Bitangent**(ϵ) and another S_{28} -cover $E_{\rm flex} \to B_{\rm flex}$ associated to the problem **Flex**(ϵ).

Definition ([4])

The *Schwarz genus* of a covering $E \to B$, denoted by $g(E \to B)$ or simply g(E), is the minimum size of an open cover of B consisting of open sets such that there exists a continuous section of the covering map $E \to B$ over each open set.

Definition ([4])

The *Schwarz genus* of a covering $E \to B$, denoted by $g(E \to B)$ or simply g(E), is the minimum size of an open cover of B consisting of open sets such that there exists a continuous section of the covering map $E \to B$ over each open set.

Theorem

The topological complexity of the problem $\mathsf{Line}(\epsilon)$ is $g(E_{\mathsf{line}} \to Bl) - 1$. Similar equations holds for the problems $\mathsf{Bitangent}(\epsilon)$ and $\mathsf{Flex}(\epsilon)$.

Proposition ([4], p.71)

Let $i^*E \to B'$ denote the pullback of a cover $E \to B$ along a continuous map $i: B' \to B$. Then $g(i^*E \to B') \le g(E \to B)$.

Proposition ([4], p.71)

Let $i^*E \to B'$ denote the pullback of a cover $E \to B$ along a continuous map $i: B' \to B$. Then $g(i^*E \to B') \le g(E \to B)$.

Proposition ([4], p.76)

If B is a CW complex of dimension d, then $g(E \rightarrow B) \leq d+1$.

Proposition ([4], p.71)

Let $i^*E \to B'$ denote the pullback of a cover $E \to B$ along a continuous map $i: B' \to B$. Then $g(i^*E \to B') \le g(E \to B)$.

Proposition ([4], p.76)

If B is a CW complex of dimension d, then $g(E \rightarrow B) \leq d+1$.

Proposition (Disconnected covers)

Consider a cover $E \to B$ with path-components $E = \bigcup_{i \in I} E_i$ where each $E_i \to B$ is also a cover. Suppose that there exists an $m \in I$ such that for any $i \in I$, there exists morphism of coverings $E_i \to E_m$. Then $g(E) = g(E_m)$.

Proposition ([4], p.98)

Suppose that $E \to B$ is a a principal Γ -bundle with a classifying map $cl: B \to B\Gamma$ where $B\Gamma$ is the classifying space of Γ . Then we have

$$g(E \to B) \ge \min\{k : \operatorname{H}^{i}(B\Gamma; A) \xrightarrow{cl^*} \operatorname{H}^{i}(B; A) \text{ is zero for any } i \ge k\}$$

for any Γ -module A. The integer on the right hand side of the inequality above is called the *homological A-genus* of the cover $E \to B$.

Summary

Let TC(P) be the topological complexity of an enumerative problem P. Let $E_P \to B_P$ be the covering space associated to the problem P. Let $E \to B$ be a pullback of $E_P \to B_P$. Let g(-) and $g_A(-)$ be the Schwarz genus and A-genus, respectively. Then we have

Summary

Let TC(P) be the topological complexity of an enumerative problem P. Let $E_P \to B_P$ be the covering space associated to the problem P. Let $E \to B$ be a pullback of $E_P \to B_P$. Let g(-) and $g_A(-)$ be the Schwarz genus and A-genus, respectively. Then we have

$$TC(P) = g(E_P \rightarrow B_P) - 1 \ge g(E \rightarrow B) - 1 \ge g_A(E \rightarrow B) - 1.$$

Summary

Let TC(P) be the topological complexity of an enumerative problem P. Let $E_P \to B_P$ be the covering space associated to the problem P. Let $E \to B$ be a pullback of $E_P \to B_P$. Let g(-) and $g_A(-)$ be the Schwarz genus and A-genus, respectively. Then we have

$$TC(P) = g(E_P \rightarrow B_P) - 1 \ge g(E \rightarrow B) - 1 \ge g_A(E \rightarrow B) - 1.$$

Next, we look for a pullback $E \to B$ such that we can calculate $g_A(E \to B)$.

We focus on the problem **Line**(ϵ), i.e., the problem of finding (within ϵ) the 27 lines on a smooth cubic surface.

We focus on the problem **Line**(ϵ), i.e., the problem of finding (within ϵ) the 27 lines on a smooth cubic surface.Recall

 $B_{\text{line}} := \{ \text{nonsingular homogeneous cubic polynomials } F(x, y, z, w) \} / \mathbb{C}^{\times}$ $E_{\text{line}} := \{ (F, l_1, \dots, l_{27}) : l_i \text{'s are the 27 lines on the cubic surface } F \in B_{\text{line}} \}$

The space B_{line} is an open submanifold of $\mathbb{C}P^{19}$ consisting of all homogeneous cubic polynomials in four variables.

We focus on the problem **Line**(ϵ), i.e., the problem of finding (within ϵ) the 27 lines on a smooth cubic surface.Recall

```
B_{\text{line}} := \{ \text{nonsingular homogeneous cubic polynomials } F(x, y, z, w) \} / \mathbb{C}^{\times}
E_{\text{line}} := \{ (F, l_1, \cdots, l_{27}) : l_i \text{'s are the 27 lines on the cubic surface } F \in B_{\text{line}} \}
```

The space B_{line} is an open submanifold of $\mathbb{C}P^{19}$ consisting of all homogeneous cubic polynomials in four variables. The projective unitary group $\mathrm{PU}(4)$ acts on B_{line} by acting on the variables (x,y,z,w).

We consider the Fermat cubic surface

$$F(x, y, z, w) = x^3 + y^3 + z^3 + w^3.$$

Consider the following subgroup $K \leq PU_4$ preserving the Fermat cubic surface F:

$$\mathcal{K} := \left\langle \begin{bmatrix} e^{2\pi i/3} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{2\pi i/3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{2\pi i/3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right\rangle$$

$$\cong (\mathbb{Z}/3\mathbb{Z})^3,$$

(1)

We consider the Fermat cubic surface

$$F(x, y, z, w) = x^3 + y^3 + z^3 + w^3.$$

Consider the following subgroup $K \leq PU_4$ preserving the Fermat cubic surface F:

$$\mathcal{K} := \left\langle \begin{bmatrix} e^{2\pi i/3} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{2\pi i/3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{2\pi i/3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right\rangle$$

$$\cong (\mathbb{Z}/3\mathbb{Z})^3$$
,

(1)

which leaves F(x, y, z, w) fixed.

Lemma

The action of K on the set of 27 lines on the Fermat cubic surface is faithful. In other words, the induced group homomorphism $K \to S_{27}$ is injective.

Lemma

The action of K on the set of 27 lines on the Fermat cubic surface is faithful. In other words, the induced group homomorphism $K \to S_{27}$ is injective.

Therefore, we have an injective map

$$\eta: PU(4)/K \to B_{line}, \ [\sigma] \mapsto \sigma F.$$

Proposition (Chen-G., 2024)

The total space of the pullback of η is homeomorphic to a disjoint union of copies of PU(4):

$$\eta^* E_{\mathsf{line}} \cong \bigcup_{S_{27}/K} \mathrm{PU}_4$$

where the components are in bijection with K-cosets in S_{27} . In particular, we have

$$g(\eta^* E_{\text{line}} \to PU(4)/K) = g(PU(4)\phi PU(4)/K),$$

where ϕ is the quotient map, and a principal K-bundle.

Theorem (Chen-G, 2025)

The homomorphism

$$\phi^* \colon H^*(\mathrm{PU}(4)/K; \mathbb{F}_3) \to H^*(PU(4); \mathbb{F}_3)$$

is surjective.

Theorem (Chen-G, 2025)

The homomorphism

$$\phi^* \colon H^*(\mathrm{PU}(4)/K; \mathbb{F}_3) \to H^*(PU(4); \mathbb{F}_3)$$

is surjective. In particular, we have $g_{\mathbb{F}_3}(E_{line} \to B_{line}) = 15$.

Theorem (Chen-G, 2025)

The homomorphism

$$\phi^* \colon H^*(\mathrm{PU}(4)/K; \mathbb{F}_3) \to H^*(PU(4); \mathbb{F}_3)$$

is surjective. In particular, we have $g_{\mathbb{F}_3}(E_{line} \to B_{line}) = 15$.

Corollary

 $g(E_{line} \rightarrow B_{line}) \geq 16$.

Theorem (Chen-G, 2025)

The homomorphism

$$\phi^* \colon H^*(\mathrm{PU}(4)/K; \mathbb{F}_3) \to H^*(PU(4); \mathbb{F}_3)$$

is surjective. In particular, we have $g_{\mathbb{F}_3}(E_{line} \to B_{line}) = 15$.

Corollary

$$g(E_{line} \rightarrow B_{line}) \geq 16$$
.

Theorem (Chen-G., 2025)

The topological complexity of the problem Line(ϵ) is no less than 15.

We have a short exact sequence of Lie groups

$$1 \to K \to PU(4) \to PU(4)/K \to 1$$
,

which induces a homotopy fiber sequence

$$PU(4)/K \xrightarrow{cl} BK \xrightarrow{\varphi} BPU(4)$$

We have a short exact sequence of Lie groups

$$1 \to K \to PU(4) \to PU(4)/K \to 1$$
,

which induces a homotopy fiber sequence

$$PU(4)/K \xrightarrow{cl} BK \xrightarrow{\varphi} BPU(4)$$

where cl is the classifying map of the principal K-bundle $\mathrm{PU}(4) \to \mathrm{PU}(4)/K$,

We have a short exact sequence of Lie groups

$$1 \to K \to PU(4) \to PU(4)/K \to 1$$
,

which induces a homotopy fiber sequence

$$PU(4)/K \xrightarrow{cl} BK \xrightarrow{\varphi} BPU(4)$$

where cl is the classifying map of the principal K-bundle $\mathrm{PU}(4) \to \mathrm{PU}(4)/K$,and φ is the map induced by the inclusion $K \to \mathrm{PU}(4)$.

Consider the map $BK \xrightarrow{\varphi} BPU(4)$. We have

$$H^*(BPU(4); \mathbb{F}_3) \cong \mathbb{F}_3[\epsilon_4, \epsilon_6, \epsilon_8], \text{ deg } epl_i = i,$$

and

$$H^*(BK; \mathbb{F}_3) \cong \mathbb{F}_3[\xi_1, \xi_2, \xi_3] \otimes \Lambda_{\mathbb{F}_3}[u_1, u_2, u_3],$$

where deg $\xi_i = 2$, deg $u_i = 1$.

$$\varphi^*(\epsilon_4) = 3\sigma_1^2 - 8\sigma_2,$$

$$\varphi^*(\epsilon_6) = \sigma_1^3 - 4\sigma_1\sigma_2 + 8\sigma_3,$$

$$\varphi^*(\epsilon_8) = 3\sigma_1^4 - 16\sigma_1^2c_2 + 64\sigma_1\sigma_3 - 256\sigma_4,$$

where $\sigma_1 = \xi_1 + \xi_2 + \xi_3$, $\sigma_2 = \xi_1 \xi_2 + \xi_2 \xi_3 + \xi_3 \xi_1$, and $\sigma_3 = \xi_1 \xi_2 \xi_3$.

The homomorphism $\varphi^* \colon H^*(B\mathrm{PU}(4); \mathbb{F}_3) \to H^*(BK; \mathbb{F}_3)$ makes $H^*(BK; \mathbb{F}_3)$ into a $H^*(B\mathrm{PU}(4); \mathbb{F}_3)$ -module.

The homomorphism $\varphi^* \colon H^*(B\mathrm{PU}(4); \mathbb{F}_3) \to H^*(BK; \mathbb{F}_3)$ makes $H^*(BK; \mathbb{F}_3)$ into a $H^*(B\mathrm{PU}(4); \mathbb{F}_3)$ -module.

The Eilenberg-Moore spectral sequence for $PU(4)/K \xrightarrow{cl} BK \xrightarrow{\varphi} BPU(4)$ is of the from

$$\textit{E}_2 = \mathsf{Tor}_{\textit{H}^*((\textit{B}\mathrm{PU}(4);\mathbb{F}_3)}(\mathbb{F}_3,\textit{H}^*(\textit{BK};\mathbb{F}_3)) \Rightarrow \textit{H}^*(\textit{PU}(4)/\textit{K};\mathbb{F}_3).$$

The homomorphism $\varphi^* \colon H^*(B\mathrm{PU}(4); \mathbb{F}_3) \to H^*(BK; \mathbb{F}_3)$ makes $H^*(BK; \mathbb{F}_3)$ into a $H^*(B\mathrm{PU}(4); \mathbb{F}_3)$ -module.

The Eilenberg-Moore spectral sequence for $PU(4)/K \xrightarrow{cl} BK \xrightarrow{\varphi} BPU(4)$ is of the from

$$E_2 = \mathsf{Tor}_{H^*((B\mathrm{PU}(4);\mathbb{F}_3)}(\mathbb{F}_3,H^*(BK;\mathbb{F}_3)) \Rightarrow H^*(PU(4)/K;\mathbb{F}_3).$$

Using the Koszul resolution of \mathbb{F}_3 , we compute the E_2 -page, concentrated in homological degree 0, and collapses at the E_2 -page.

The homomorphism $\varphi^* \colon H^*(B\mathrm{PU}(4); \mathbb{F}_3) \to H^*(BK; \mathbb{F}_3)$ makes $H^*(BK; \mathbb{F}_3)$ into a $H^*(B\mathrm{PU}(4); \mathbb{F}_3)$ -module.

The Eilenberg-Moore spectral sequence for $PU(4)/K \xrightarrow{cl} BK \xrightarrow{\varphi} BPU(4)$ is of the from

$$E_2 = \mathsf{Tor}_{H^*((B\mathrm{PU}(4);\mathbb{F}_3)}(\mathbb{F}_3,H^*(BK;\mathbb{F}_3)) \Rightarrow H^*(PU(4)/K;\mathbb{F}_3).$$

Using the Koszul resolution of \mathbb{F}_3 , we compute the E_2 -page, concentrated in homological degree 0, and collapses at the E_2 -page.

The lower bounds of the topological complexity of $Bitangent(\epsilon)$ and $Flex(\epsilon)$ are obtained in similar ways.

Further Questions

• Better approximations of the lower bounds of the aforementioned problems. This may involve understanding the cohomology of B_{line} ;

Further Questions

- Better approximations of the lower bounds of the aforementioned problems. This may involve understanding the cohomology of B_{line} ;
- enumerative Problems in higher dimensions;

Further Questions

- Better approximations of the lower bounds of the aforementioned problems. This may involve understanding the cohomology of B_{line};
- enumerative Problems in higher dimensions;
- geometric interpretations of the cohomology classes of BPU(n).

Thank You!

A note on the homology of Σ_n , the Schwartz genus, and solving polynomial equations.

Contemporary Mathematics, 399:1, 2006.

W. Chen and Z. Wan.

Topological complexity of finding flex points on cubic plane curves. *arXiv:2306.17303*.

C. De Concini, C. Procesi, and M. Salvetti.

On the equation of degree 6.

Commentarii Mathematici Helvetici, 79:605-617, 2004.

A. Schwarz.

The genus of a fiber space.

Amer. Math. Soc. Transl., 2, 1966.

S. Smale.

On the topology of algorithms. I.

J. Complexity, 3(2):81-89, 1987.

V. A. Vassiliev.

Cohomology of braid groups and the complexity of algorithms. Funktsional. Anal. i Prilozhen., 22(3):15-24, 1989.