Homology description of equivariant bordism group $\mathcal{Z}_{n+1}(\mathbb{Z}_2^n)$ of (n+1)-dim \mathbb{Z}_2^n -manifolds with isolated fixed points

Bo Chen Joint work with Professor Zhi Lü Workshop in SCNU

November 7, 2025

Contents

1. Background

2. Main theorem

3. Ideas & Proof

4. Computation of the dimensions

5. Further discussion

Let

$$\mathcal{Z}_m(\mathbb{Z}_2^n)$$

be the equivariant bordism group of m-dimensional closed manifolds with effective \mathbb{Z}_2^n -actions fixing isolated points. Denote by $\mathcal{Z}_*(\mathbb{Z}_2^n) = \sum_m \mathcal{Z}_m(\mathbb{Z}_2^n)$ a graded algebra.

Let

$$\mathcal{Z}_m(\mathbb{Z}_2^n)$$

be the equivariant bordism group of m-dimensional closed manifolds with effective \mathbb{Z}_2^n -actions fixing isolated points. Denote by $\mathcal{Z}_*(\mathbb{Z}_2^n) = \sum_m \mathcal{Z}_m(\mathbb{Z}_2^n)$ a graded algebra.

- initiated by Conner and Floyd in the 1960s [1].
- in [1], $\mathcal{Z}_*(\mathbb{Z}_2) = 0$, $\mathcal{Z}_*(\mathbb{Z}_2^2) = \mathbb{Z}_2[u]$ where $u = [\mathbb{R}P^2]$.

Let

$$\mathcal{Z}_m(\mathbb{Z}_2^n)$$

be the equivariant bordism group of m-dimensional closed manifolds with effective \mathbb{Z}_2^n -actions fixing isolated points. Denote by $\mathcal{Z}_*(\mathbb{Z}_2^n) = \sum_m \mathcal{Z}_m(\mathbb{Z}_2^n)$ a graded algebra.

- initiated by Conner and Floyd in the 1960s [1].
- in [1], $\mathcal{Z}_*(\mathbb{Z}_2) = 0$, $\mathcal{Z}_*(\mathbb{Z}_2^2) = \mathbb{Z}_2[u]$ where $u = [\mathbb{R}P^2]$.
- Stong(1970) [2]: the homomorphism

$$\phi_* : \mathcal{Z}_*(\mathbb{Z}_2^n) \quad \to \mathcal{R}_*(\mathbb{Z}_2^n) = \mathbb{Z}_2[\mathsf{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)]$$
$$[M] \qquad \mapsto \sum_{x \in M^{\mathbb{Z}_2^n}} \tau_x M$$

is injective.

Let

$$\mathcal{Z}_m(\mathbb{Z}_2^n)$$

be the equivariant bordism group of m-dimensional closed manifolds with effective \mathbb{Z}_2^n -actions fixing isolated points. Denote by $\mathcal{Z}_*(\mathbb{Z}_2^n) = \sum_m \mathcal{Z}_m(\mathbb{Z}_2^n)$ a graded algebra.

- initiated by Conner and Floyd in the 1960s [1].
- in [1], $\mathcal{Z}_*(\mathbb{Z}_2) = 0$, $\mathcal{Z}_*(\mathbb{Z}_2^2) = \mathbb{Z}_2[u]$ where $u = [\mathbb{R}P^2]$.
- Stong(1970) [2]: the homomorphism

$$\phi_* : \mathcal{Z}_*(\mathbb{Z}_2^n) \longrightarrow \mathcal{R}_*(\mathbb{Z}_2^n) = \mathbb{Z}_2[\mathsf{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)]$$
$$[M] \longmapsto \sum_{x \in M^{\mathbb{Z}_2^n}} \tau_x M$$

is injective.

• Since then, the ring structure of $\mathcal{Z}_*(\mathbb{Z}_2^n)$, even the group $\mathcal{Z}_m(\mathbb{Z}_2^n)$, has remained undetermined for n > 3.

Focus on the Group $\mathcal{Z}_m(\mathbb{Z}_2^n)$

$$\phi_m: \mathcal{Z}_m(\mathbb{Z}_2^n) \hookrightarrow \mathcal{R}_m(\mathbb{Z}_2^n)$$

Three basic problems on $\mathcal{Z}_m(\mathbb{Z}_2^n)$

- (P1) Characterize the image of ϕ_m , i.e., determine which polynomials in $\mathcal{R}_m(\mathbb{Z}_2^n)$ arise as tangent representations at fixed points of a \mathbb{Z}_2^n -manifolds.
- (P2) Determine the dimension of $\mathbb{Z}_m(\mathbb{Z}_2^n)$ as a vector space over \mathbb{Z}_2 for every m and n. Note that $\mathbb{Z}_m(\mathbb{Z}_2^n)$ is trivial for 0 < m < n by the effectiveness of \mathbb{Z}_2^n -actions.
- (P3) Which specific types of \mathbb{Z}_2^n -manifolds can be used as *preferred representatives* in equivariant bordism classes of $\mathcal{Z}_m(\mathbb{Z}_2^n)$?

- Lü(2009): (3,3):
 - (P2): dim $\mathcal{Z}_3(\mathbb{Z}_2^3) = 13$,
 - (P3): each class in $\mathcal{Z}_3(\mathbb{Z}_2^3)$ contains a small cover.

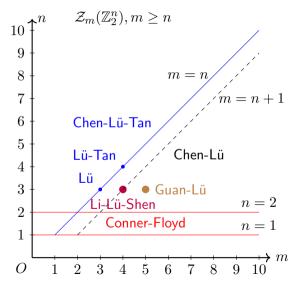
- Lü(2009): (3,3):
 - (P2): dim $\mathcal{Z}_3(\mathbb{Z}_2^3) = 13$,
 - (P3): each class in $\mathcal{Z}_3(\mathbb{Z}_2^3)$ contains a small cover.
- Lü-Tan(2014): (*n*, *n*):
 - (P1): a faithful polynomial $f \in \text{Im } \phi_n$ iff $d(f^*) = 0$, where f^* is the dual of f.
 - (P2): dim $\mathcal{Z}_4(\mathbb{Z}_2^4) = 511$,
 - (P3): each class in $\mathcal{Z}_n(\mathbb{Z}_2^n)$ contains a small cover.

- Lü(2009): (3,3):
 - (P2): dim $\mathcal{Z}_3(\mathbb{Z}_2^3) = 13$,
 - (P3): each class in $\mathcal{Z}_3(\mathbb{Z}_2^3)$ contains a small cover.
- Lü-Tan(2014): (n, n):
 - (P1): a faithful polynomial $f \in \text{Im } \phi_n$ iff $d(f^*) = 0$, where f^* is the dual of f.
 - (P2): dim $\mathcal{Z}_4(\mathbb{Z}_2^4) = 511$,
 - (P3): each class in $\mathcal{Z}_n(\mathbb{Z}_2^n)$ contains a small cover.
- Chen-Lü-Tan(2025): (n, n):
 - (P1): observe that $f \in \text{Im } \phi_n$ iff $f^* \in Z_{n-1}(X(\mathbb{Z}_2^n))$, so $\mathcal{Z}_n(\mathbb{Z}_2^n) \cong \tilde{H}_{n-1}(X(\mathbb{Z}_2^n))$.
 - (P2): dim $\mathcal{Z}_n(\mathbb{Z}_2^n) = A_n$,
 - (P3): a set of generators consisting of general Bott manifolds.

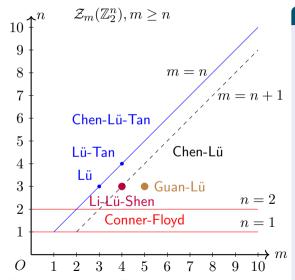
- Lü(2009): (3,3):
 - (P2): dim $\mathcal{Z}_3(\mathbb{Z}_2^3) = 13$.
 - (P3): each class in $\mathbb{Z}_3(\mathbb{Z}_2^3)$ contains a small cover.
- Lü-Tan(2014): (n, n):
 - (P1): a faithful polynomial $f \in \text{Im } \phi_n$ iff $d(f^*) = 0$, where f^* is the dual of f.
 - (P2): dim $\mathcal{Z}_4(\mathbb{Z}_2^4) = 511$.
 - (P3): each class in $\mathcal{Z}_n(\mathbb{Z}_2^n)$ contains a small cover.
- Chen-Lü-Tan(2025): (n, n):
 - (P1): observe that $f \in \text{Im } \phi_n$ iff $f^* \in Z_{n-1}(X(\mathbb{Z}_2^n))$, so $\mathcal{Z}_n(\mathbb{Z}_2^n) \cong \tilde{H}_{n-1}(X(\mathbb{Z}_2^n))$.
 - (P2): dim $\mathcal{Z}_n(\mathbb{Z}_2^n) = A_n$,
 - (P3): a set of generators consisting of general Bott manifolds.
- Li-Lü-Shen(2025): (n, m):
 - (P1): LLS detection method in terms of graphs labeled by irreducible representations.
 - (P2): (3,4): dim $\mathcal{Z}_4(\mathbb{Z}_2^3) = 32$
 - (P3): (3,4): generators: certain actions on $\mathbb{R}P^2 \times \mathbb{R}P^2$, $\mathbb{R}P^4$ and $\mathbb{R}P(\gamma \oplus \gamma \oplus \gamma \oplus \mathbb{R})$

- Lü(2009): (3,3):
 - (P2): dim $\mathcal{Z}_3(\mathbb{Z}_2^3) = 13$.
 - (P3): each class in $\mathbb{Z}_3(\mathbb{Z}_2^3)$ contains a small cover.
- Lü-Tan(2014): (n, n):
 - (P1): a faithful polynomial $f \in \text{Im } \phi_n$ iff $d(f^*) = 0$, where f^* is the dual of f.
 - (P2): dim $\mathcal{Z}_4(\mathbb{Z}_2^4) = 511$.
 - (P3): each class in $\mathcal{Z}_n(\mathbb{Z}_2^n)$ contains a small cover.
- Chen-Lü-Tan(2025): (n, n):
 - (P1): observe that $f \in \text{Im } \phi_n$ iff $f^* \in Z_{n-1}(X(\mathbb{Z}_2^n))$, so $\mathcal{Z}_n(\mathbb{Z}_2^n) \cong \tilde{H}_{n-1}(X(\mathbb{Z}_2^n))$.
 - (P2): dim $\mathcal{Z}_n(\mathbb{Z}_2^n) = A_n$.
 - (P3): a set of generators consisting of general Bott manifolds.
- Li-Lü-Shen(2025): (n, m):
 - (P1): LLS detection method in terms of graphs labeled by irreducible representations.
 - (P2): (3,4): dim $\mathcal{Z}_4(\mathbb{Z}_2^3) = 32$
 - (P3): (3,4): generators: certain actions on $\mathbb{R}P^2 \times \mathbb{R}P^2$, $\mathbb{R}P^4$ and $\mathbb{R}P(\gamma \oplus \gamma \oplus \gamma \oplus \mathbb{R})$
- Guan-Lü(2025): (3,5): (P2): $\dim \mathcal{Z}_5(\mathbb{Z}_2^3) = 77$,

Progress overview: a visual summary



Progress overview: a visual summary



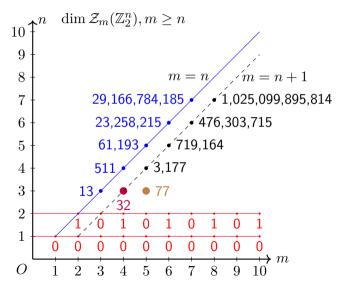
Main Result

For $\mathcal{Z}_{n+1}(\mathbb{Z}_2^n)$, we prove that

- $\mathcal{Z}_{n+1}(\mathbb{Z}_2^n) \cong H_{n-2}(\mathfrak{B})$, where \mathfrak{B} is a chain complex constructed from $X(\mathbb{Z}_2^n)$; and
- a formula for dim $\mathcal{Z}_{n+1}(\mathbb{Z}_2^n)$.

n	$\dim \mathcal{Z}_{n+1}(\mathbb{Z}_2^n)$
1,2	0
	0
3	32
4	3,177
5	719, 164
6	476, 303, 715
7	1,025,099,895,814

Dimensions of equivariant bordism groups



Idea for $\mathcal{Z}_{n+1}(\mathbb{Z}_2^n)$

Inspired by

Effectiveness of dualization in the work of $\mathcal{Z}_n(\mathbb{Z}_2^n)$,

we translate

the LLS detection method

into a simpler dual formulation

$$\sum\nolimits_{\tau \in \mathcal{A}} \tau \in \operatorname{Im} \, \phi_{n+1} \Longleftrightarrow \partial_{n-2} \sum\nolimits_{\tau \in \mathcal{A}} D(\tau) = 0.$$

Idea for $\mathcal{Z}_{n+1}(\mathbb{Z}_2^n)$

Inspired by

Effectiveness of dualization in the work of $\mathcal{Z}_n(\mathbb{Z}_2^n)$,

we translate

the LLS detection method

into a simpler dual formulation

$$\sum\nolimits_{\tau \in \mathcal{A}} \tau \in \operatorname{Im} \, \phi_{n+1} \Longleftrightarrow \partial_{n-2} \sum\nolimits_{\tau \in \mathcal{A}} D(\tau) = 0.$$

More specifically, we prove that the sequence

$$0 \longrightarrow \mathcal{Z}_{n+1}(\mathbb{Z}_2^n) \stackrel{\phi_{n+1}}{\cong} \operatorname{Im} \ \phi_{n+1} \hookrightarrow \bar{\mathcal{F}}_{n+1} \stackrel{D}{\cong} \mathfrak{B}_{n-2} \stackrel{\partial_{n-2}}{\longrightarrow} \mathfrak{B}_{n-3}$$
 (1)

is exact. Hence,

$$\mathcal{Z}_{n+1}(\mathbb{Z}_2^n) \stackrel{\phi_{n+1}}{\cong} \operatorname{Im} \ \phi_{n+1} \stackrel{D}{\cong} \ker \partial_{n-2} = H_{n-2}(\mathfrak{B}; \mathbb{Z}_2).$$

Faithful \mathbb{Z}_2^n -rep.'s

Definition (faithful representation)

Let $\tau = \rho_1 \cdots \rho_m$ be an m-dim \mathbb{Z}_2^n -rep., where $\rho_i \in \text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$ is the irreducible sub-rep of τ , and the product corresponds to direct sum of rep.'s. τ is called *faithful*, if all ρ_i 's are nontrivial and they span $\text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$.

Faithful \mathbb{Z}_2^n -rep.'s

Definition (faithful representation)

Let $\tau = \rho_1 \cdots \rho_m$ be an m-dim \mathbb{Z}_2^n -rep., where $\rho_i \in \mathsf{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$ is the irreducible sub-rep of τ , and the product corresponds to direct sum of rep.'s. τ is called *faithful*, if all ρ_i 's are nontrivial and they span $\text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$.

Faithful tangent representations

Let M be an m-dimensional smooth closed manifold admitting an effective \mathbb{Z}_2^n -action with isolated fixed points, representing an equivariant bordism class in $\mathcal{Z}_m(\mathbb{Z}_2^n)$. By the effectiveness of action, the tangent representation $\tau_x M$ at each fixed point x is faithful.

Faithful \mathbb{Z}_2^n -rep.'s

Definition (faithful representation)

Let $\tau = \rho_1 \cdots \rho_m$ be an m-dim \mathbb{Z}_2^n -rep., where $\rho_i \in \text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$ is the irreducible sub-rep of τ , and the product corresponds to direct sum of rep.'s. τ is called *faithful*, if all ρ_i 's are nontrivial and they span $\text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$.

Faithful tangent representations

Let M be an m-dimensional smooth closed manifold admitting an effective \mathbb{Z}_2^n -action with isolated fixed points, representing an equivariant bordism class in $\mathcal{Z}_m(\mathbb{Z}_2^n)$. By the effectiveness of action, the tangent representation $\tau_x M$ at each fixed point x is faithful.

Denote by

$$\mathcal{F}_m \subseteq \mathcal{R}_m(\mathbb{Z}_2^n), m \ge n$$

be the set of all m-dim faithful \mathbb{Z}_2^n -rep.'s. Let $\bar{\mathcal{F}}_m$ be the subspace spanned by \mathcal{F}_m . Of course, Im $\phi_m \subset \bar{\mathcal{F}}_m$.

Dualization in the papers on $\mathcal{Z}_n(\mathbb{Z}_2^n)$

- Let $\tau = \rho_1 \cdots \rho_n \in \mathcal{F}_n$. Then $\{\rho_1, \cdots, \rho_n\}$ forms a basis of $\mathsf{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$.
- Let $\sigma_{\tau} = \{\alpha_1, \cdots, \alpha_n\} \subseteq \mathbb{Z}_2^n$ be its dual.
- Define dualization $D: \mathcal{F}_n \longrightarrow C_{n-1}(X(\mathbb{Z}_2^n))$ via $D(\tau) = \sigma_{\tau}$.

Dualization in the papers on $\mathcal{Z}_n(\mathbb{Z}_2^n)$

- Let $\tau = \rho_1 \cdots \rho_n \in \mathcal{F}_n$. Then $\{\rho_1, \cdots, \rho_n\}$ forms a basis of $\mathsf{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$.
- Let $\sigma_{\tau} = \{\alpha_1, \cdots, \alpha_n\} \subseteq \mathbb{Z}_2^n$ be its dual.
- Define dualization $D: \mathcal{F}_n \longrightarrow C_{n-1}(X(\mathbb{Z}_2^n))$ via $D(\tau) = \sigma_{\tau}$.

Theorem (Lü-Tan(2014))

Let $A \subseteq \mathcal{F}_n$ be nonempty. Then

$$\sum\nolimits_{\tau \in \mathcal{A}} \tau \in \mathit{Im} \; \phi_n \Longleftrightarrow \partial_{n-1} \sum\nolimits_{\tau \in \mathcal{A}} D(\tau) = 0.$$

Dualization in the papers on $\mathcal{Z}_n(\mathbb{Z}_2^n)$

- Let $\tau = \rho_1 \cdots \rho_n \in \mathcal{F}_n$. Then $\{\rho_1, \cdots, \rho_n\}$ forms a basis of $\mathsf{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$.
- Let $\sigma_{\tau} = \{\alpha_1, \cdots, \alpha_n\} \subseteq \mathbb{Z}_2^n$ be its dual.
- Define dualization $D: \mathcal{F}_n \longrightarrow C_{n-1}(X(\mathbb{Z}_2^n))$ via $D(\tau) = \sigma_{\tau}$.

Theorem ($L\ddot{u}$ -Tan(2014))

Let $A \subseteq \mathcal{F}_n$ be nonempty. Then

$$\sum\nolimits_{\tau \in \mathcal{A}} \tau \in \mathit{Im} \; \phi_n \Longleftrightarrow \partial_{n-1} \sum\nolimits_{\tau \in \mathcal{A}} D(\tau) = 0.$$

Corollary (Chen-Lü-Tan(2025))

$$0 \longrightarrow \mathcal{Z}_n(\mathbb{Z}_2^n) \overset{\phi_n}{\cong} \operatorname{Im} \ \phi_n \hookrightarrow \bar{\mathcal{F}}_n \overset{D}{\cong} C_{n-1}(X(\mathbb{Z}_2^n)) \overset{\partial_{n-1}}{\longrightarrow} C_{n-2}(X(\mathbb{Z}_2^n))$$

is exact, where $X(\mathbb{Z}_2^n)$ is the universal complex whose simplexes are independent subsets of \mathbb{Z}_2^n . Therefore, $Z_n(\mathbb{Z}_2^n) \cong \tilde{H}_{n-1}(X(\mathbb{Z}_2^n), \mathbb{Z}_2)$ with dimension $A_n = (-1)^n + \sum_{i=0}^{n-1} (-1)^{n-1-i} \frac{1}{(i+1)!} \prod_{j=0}^i (2^n - 2^j)$.

Equivalence relation \sim_{ρ}

Definition

• Let ρ be an irreducible non-trivial sub-rep of τ . rank $\ker \rho = n-1$. Denote by

$$\tau|_{\ker \rho}$$

the quotient of the restriction $\operatorname{Res}_{\ker\rho}^{\mathbb{Z}_2^n} \tau$ by a trivial 1-dimesnional sub-rep.

• $\dim \tau|_{\ker \rho}$ - rank $\ker \rho = (m-1) - (n-1) = m-n$, same as τ .

Equivalence relation \sim_{ρ}

Definition

• Let ρ be an irreducible non-trivial sub-rep of τ . rank $\ker \rho = n-1$. Denote by

$$\tau|_{\ker\rho}$$

the quotient of the restriction $\operatorname{Res}_{\ker \rho}^{\mathbb{Z}_2^n} \tau$ by a trivial 1-dimesnional sub-rep.

• $\dim \tau|_{\ker \rho}$ - rank $\ker \rho = (m-1) - (n-1) = m-n$, same as τ .

Define a relation on $\mathcal{A}_{\rho} = \{ \tau \in \mathcal{A} \mid \tau \text{ has a sub-rep isomorphic to } \rho \}$. Let $\tau, \tau' \in \mathcal{A}_{\rho}$. Set

$$\tau \sim_{\rho} \tau'$$
 if $\tau|_{\ker \rho} \cong \tau'|_{\ker \rho}$.

Equivalence relation \sim_{ρ}

Definition

• Let ρ be an irreducible non-trivial sub-rep of τ . rank $\ker \rho = n-1$. Denote by

$$\tau|_{\ker\rho}$$

the quotient of the restriction $\operatorname{Res}_{\ker \rho}^{\mathbb{Z}_2^n} \tau$ by a trivial 1-dimesnional sub-rep.

• $\dim \tau|_{\ker \rho}$ - rank $\ker \rho = (m-1) - (n-1) = m-n$, same as τ .

Define a relation on $\mathcal{A}_{\rho} = \{ \tau \in \mathcal{A} \mid \tau \text{ has a sub-rep isomorphic to } \rho \}$. Let $\tau, \tau' \in \mathcal{A}_{\rho}$. Set

$$\tau \sim_{\rho} \tau'$$
 if $\tau|_{\ker \rho} \cong \tau'|_{\ker \rho}$.

Equivalently, $\tau = \rho \rho_2 \cdots \rho_m \sim_{\rho} \tau' = \rho \rho'_2 \cdots \rho'_m$ if $\exists \pi \in S_{m-1}$ such that $\rho'_i = \rho_{\pi(i)}$ or $\rho'_i = \rho_{\pi(i)} + \rho$ in $\operatorname{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$.

Dualization of a faithful representation $\tau \in \mathcal{F}_{n+1}$

- Unlike the case m=n, the factors of $\tau=\rho_0\rho_1\cdots\rho_n$ no longer form a unique basis for $\text{Hom}(\mathbb{Z}_2^n,\mathbb{Z}_2)$.
- A construction of $D(\tau)$ based on any single basis would be both non-canonical and inadequate for a well-defined duality framework.
- Instead, the proper definition must incorporate the collective data from all possible bases formed by the factors of τ .

Dualization of a faithful representation $\tau \in \mathcal{F}_{n+1}$

- Unlike the case m=n, the factors of $\tau=\rho_0\rho_1\cdots\rho_n$ no longer form a unique basis for $\operatorname{Hom}(\mathbb{Z}_2^n,\mathbb{Z}_2)$.
- ullet A construction of D(au) based on any single basis would be both non-canonical and inadequate for a well-defined duality framework.
- Instead, the proper definition must incorporate the collective data from all possible bases formed by the factors of τ .
- Let $\tau = \rho_0 \rho_1 \cdots \rho_n \in \mathcal{F}_{n+1}$, where $\mathbf{b} = \{\rho_1, \cdots, \rho_n\}$ forms a basis of $\mathrm{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$ and $\rho_0 = \rho_1 + \cdots + \rho_{p+1}$, for some p.
- **b** $\stackrel{\mathsf{dual}}{\longleftrightarrow} \sigma^p \cup \sigma^{n-p-2} = \{\alpha_1, \cdots, \alpha_{p+1}\} \cup \{\alpha_{p+2}, \cdots, \alpha_n\}.$
- Bases arising from τ : $\mathbf{b} \setminus \{\rho_i\} \cup \{\rho_0\} \stackrel{\mathsf{dual}}{\longleftrightarrow} \sigma_i^p \cup \sigma^{n-p-2}$, where $\sigma_i^p = (\sigma^p \setminus \{\alpha_i\} + \alpha_i) \cup \{\alpha_i\} = \{\alpha_{1i}, \cdots, \alpha_{i-1,i}, \alpha_i, \alpha_{i+1,i}, \cdots, \alpha_{p+1,i}\}$, $i \in [p+1]$.

Dualization of a \mathbb{Z}_2^n -rep with dim n+1

Definition (Dual of τ)

With the notation above, define

$$D(\tau) \stackrel{\triangle}{=} [\sigma^p] \otimes \sigma^{n-p-2} = (\sigma^p + \sum_{i=1}^{p+1} \sigma_i^p) \otimes \sigma^{n-p-2}.$$

Dualization of a \mathbb{Z}_2^n -rep with dim n+1

Definition (Dual of τ)

With the notation above, define

$$D(\tau) \stackrel{\triangle}{=} [\sigma^p] \otimes \sigma^{n-p-2} = (\sigma^p + \sum_{i=1}^{p+1} \sigma_i^p) \otimes \sigma^{n-p-2}.$$

- The value $D(\tau)$ is independent of the choice of the basis. Hence it's well defined.
- $\tau \sim_{\rho} \tau' \iff \tau|_{\ker \rho} = \tau'|_{\ker \rho} \iff D(\tau|_{\ker \rho}) = D(\tau'|_{\ker \rho})$

Dualization of a \mathbb{Z}_2^n -rep with dim n+1

Definition (Dual of τ)

With the notation above, define

$$D(\tau) \stackrel{\triangle}{=} [\sigma^p] \otimes \sigma^{n-p-2} = (\sigma^p + \sum_{i=1}^{p+1} \sigma_i^p) \otimes \sigma^{n-p-2}.$$

- The value $D(\tau)$ is independent of the choice of the basis. Hence it's well defined.
- $\tau \sim_{\rho} \tau' \iff \tau|_{\ker \rho} = \tau'|_{\ker \rho} \iff D(\tau|_{\ker \rho}) = D(\tau'|_{\ker \rho})$
- $D(\tau) \in D_p \otimes C_{n-p-2}$, where
 - C_{n-p-2} is the (n-p-2)-th group of augmented simplicial chain complex of $X(\mathbb{Z}_2^n)$,
 - $D_p \subseteq C_p$ is generated by $[\sigma^p]$'s.
- $D(\tau|_{\ker \rho}) = [\sigma^p \setminus \{\alpha\}] \otimes (\sigma^{n-p-2} \setminus \{\alpha\})$, where $\sigma^p \cup \sigma^{n-p-2}$ is the dual of a basis containing ρ and arising from τ , α is the vector in the dual corresponding to ρ .

Summary for dualization of a representation

Let τ be a \mathbb{Z}_2^n -representation with dimension n+1. Suppose all the irreducible sub-rep.'s of τ Span $\text{Hom}(\mathbb{Z}_2^n,\mathbb{Z}_2)$.

Summary for dualization of a representation

Let τ be a \mathbb{Z}_2^n -representation with dimension n+1. Suppose all the irreducible sub-rep.'s of τ Span $\mathsf{Hom}(\mathbb{Z}_2^n,\mathbb{Z}_2)$.

$$D(\tau) = [\sigma] \otimes \omega = \begin{cases} \emptyset \otimes \omega, & \tau \text{ admits a trivial sub-rep,} \\ [\sigma] \otimes \omega, & \text{otherwise} \end{cases}$$

where $\sigma \in \mathsf{Lk}\ \omega$ and $\sigma \cup \omega$ is the dual of a basis arising from τ .

Summary for dualization of a representation

Let τ be a \mathbb{Z}_2^n -representation with dimension n+1. Suppose all the irreducible sub-rep.'s of τ Span $\mathsf{Hom}(\mathbb{Z}_2^n,\mathbb{Z}_2)$.

$$D(\tau) = [\sigma] \otimes \omega = \begin{cases} \emptyset \otimes \omega, & \tau \text{ admits a trivial sub-rep,} \\ [\sigma] \otimes \omega, & \text{otherwise} \end{cases}$$

where $\sigma \in \mathsf{Lk}\ \omega$ and $\sigma \cup \omega$ is the dual of a basis arising from τ .

A key observation

- the terms in $[\sigma]$ have form $(\sigma \setminus \{\alpha\} + \alpha) \cup \{\alpha\}$, where $\alpha \in \sigma \in X(\mathbb{Z}_2^n)$.
- $\operatorname{Span}((\sigma \setminus \{\alpha\} + \alpha) \cup \{\alpha\}) = \operatorname{Span} \sigma \subseteq \mathbb{Z}_2^n$.
- Hence $Lk((\sigma \setminus {\alpha} + \alpha) \cup {\alpha}) = Lk \ \sigma \triangleq Lk[\sigma].$

Summary for dualization of a representation

Let τ be a \mathbb{Z}_2^n -representation with dimension n+1. Suppose all the irreducible sub-rep.'s of τ Span $\mathsf{Hom}(\mathbb{Z}_2^n,\mathbb{Z}_2)$.

$$D(\tau) = [\sigma] \otimes \omega = \begin{cases} \emptyset \otimes \omega, & \tau \text{ admits a trivial sub-rep,} \\ [\sigma] \otimes \omega, & \text{otherwise} \end{cases}$$

where $\sigma \in \mathsf{Lk}\ \omega$ and $\sigma \cup \omega$ is the dual of a basis arising from τ .

A key observation

- the terms in $[\sigma]$ have form $(\sigma \setminus \{\alpha\} + \alpha) \cup \{\alpha\}$, where $\alpha \in \sigma \in X(\mathbb{Z}_2^n)$.
- $\operatorname{Span}((\sigma \setminus \{\alpha\} + \alpha) \cup \{\alpha\}) = \operatorname{Span} \sigma \subseteq \mathbb{Z}_2^n$.
- Hence $Lk((\sigma \setminus {\alpha} + \alpha) \cup {\alpha}) = Lk \ \sigma \triangleq Lk[\sigma].$
- $\omega \in \mathsf{Lk}[\sigma]$.

Summary for dualization of a representation

Let τ be a \mathbb{Z}_2^n -representation with dimension n+1. Suppose all the irreducible sub-rep.'s of τ Span $\mathsf{Hom}(\mathbb{Z}_2^n,\mathbb{Z}_2)$.

$$D(\tau) = [\sigma] \otimes \omega = \begin{cases} \emptyset \otimes \omega, & \tau \text{ admits a trivial sub-rep,} \\ [\sigma] \otimes \omega, & \text{otherwise} \end{cases}$$

where $\sigma \in \mathsf{Lk}\ \omega$ and $\sigma \cup \omega$ is the dual of a basis arising from τ .

A key observation

- the terms in $[\sigma]$ have form $(\sigma \setminus \{\alpha\} + \alpha) \cup \{\alpha\}$, where $\alpha \in \sigma \in X(\mathbb{Z}_2^n)$.
- $\operatorname{Span}((\sigma \setminus \{\alpha\} + \alpha) \cup \{\alpha\}) = \operatorname{Span} \sigma \subseteq \mathbb{Z}_2^n$.
- Hence $Lk((\sigma \setminus {\alpha} + \alpha) \cup {\alpha}) = Lk \ \sigma \triangleq Lk[\sigma].$
- $\omega \in \mathsf{Lk}[\sigma]$.
- $\mathsf{Lk}[\sigma] \simeq (\bigvee S^k)^{A_{p,n}}$, where $k = n |\sigma| 1$.

LLS detection method

Theorem (LLS detection method)

Let $A \subseteq \mathcal{F}_{n+1}$ be nonempty. Then the following statements are equivalent.

- (1) $\sum_{\tau \in \mathcal{A}} \tau \in \operatorname{Im} \phi_{n+1}$.
- (2) For any nontrivial $\rho \in \operatorname{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$ such that $\mathcal{A}_{\rho} \neq \emptyset$, $\mathcal{A}_{\rho} \subseteq \mathcal{A}$ satisfies that for each equivalence class $\mathcal{A}_{\rho,i}$ in the quotient set $\mathcal{A}_{\rho}/\sim_{\rho}$,
 - $|\mathcal{A}_{\rho,i}| \equiv 0 \pmod{2}$, and
 - if $\chi_{\rho}(\mathcal{A}_{\rho,i})=2$, then for arbitary nontrivial element $\beta\in\mathrm{Hom}(\mathbb{Z}_2^n,\mathbb{Z}_2)$,

$$\sum_{\tau \in \mathcal{A}_{g,i}} \chi_{\beta}(\tau) \equiv 0 \pmod{2}.$$

Dualization of LLS

Theorem

Let $A \subseteq \mathcal{F}_{n+1}$ be nonempty. Then

$$\sum_{\tau \in \mathcal{A}} \tau \in \operatorname{Im} \, \phi_{n+1} \Longleftrightarrow \sum_{\tau \in \mathcal{A}} \partial D(\tau) = 0,$$

where

$$\partial D(\tau) = \begin{cases} \sum_{\rho \in (\tau)} D(\tau|_{\ker \rho}), & \tau \text{ is square-free as a monomial,} \\ \alpha_1 D(\tau|_{\ker \rho_1}) + \sum_{i=2}^n D(\tau|_{\ker \rho_i}), & \tau = \rho_1^2 \rho_2 \cdots \rho_n. \end{cases}$$

where α_1 is the vector in the dual basis of $\{\rho_1, \dots, \rho_n\}$ corresponding to ρ_1 .

Key of the proof of dualization theorem

$$\begin{bmatrix} 1 & \epsilon_2 & \epsilon_3 & \cdots & \epsilon_n \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & & & \cdots & \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}^{-1,T} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \epsilon_2 & 1 & 0 & \cdots & 0 \\ \epsilon_3 & 0 & 1 & \cdots & 0 \\ & & & \cdots & \\ \epsilon_n & 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$\tau = \rho_1^2 \rho_2 \cdots \rho_n \sim_{\rho_1} \tau' = \rho_1^2 \rho_2' \cdots \rho_n'$$

where $\rho_i' = \rho_i + \epsilon_i \rho_1, i = 2, \cdots, n$.

The dual of bases are

$$\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$$

and

$$\{\alpha_1', \alpha_2, \cdots, \alpha_n\}$$

where $\alpha'_1 = \alpha_1 + \epsilon_2 \alpha_2 + \cdots + \epsilon_n \alpha_n$.

Differentials in \mathfrak{D}

- $\mathfrak{D}_p \triangleq \operatorname{Span}_{\mathbb{Z}_2}\{[\sigma^p] \mid \sigma^p \in X(\mathbb{Z}_2^n), |\sigma^p| = p+1\}, p = 0, 1, \cdots, n-1;$
- $\mathfrak{D}_{-1} \triangleq \mathbb{Z}_2^n \langle \emptyset \rangle$;
- $\mathfrak{D}_p \triangleq 0$, otherwise.

Differentials in \mathfrak{D}

- $\mathfrak{D}_p \triangleq \mathsf{Span}_{\mathbb{Z}_2}\{[\sigma^p] \mid \sigma^p \in X(\mathbb{Z}_2^n), |\sigma^p| = p+1\}, p = 0, 1, \cdots, n-1;$
- $\mathfrak{D}_{-1} \triangleq \mathbb{Z}_2^n \langle \emptyset \rangle$;
- $\mathfrak{D}_p \triangleq 0$, otherwise.
- ullet For $p\in [n-1]$, set $d_p^D:\mathfrak{D}_p o\mathfrak{D}_{p-1}$ by

$$d_p^D([\sigma^p]) = [\sigma_1^p \setminus \{\alpha_1\}] + \sum_{i=1}^{p+1} [\sigma^p \setminus \{\alpha_i\}].$$

Differentials in \mathfrak{D}

- $\mathfrak{D}_p \triangleq \mathsf{Span}_{\mathbb{Z}_2}\{[\sigma^p] \mid \sigma^p \in X(\mathbb{Z}_2^n), |\sigma^p| = p+1\}, p = 0, 1, \cdots, n-1;$
- $\mathfrak{D}_{-1} \triangleq \mathbb{Z}_2^n \langle \emptyset \rangle$;
- $\mathfrak{D}_p \triangleq 0$, otherwise.
- ullet For $p\in [n-1]$, set $d_p^D:\mathfrak{D}_p o\mathfrak{D}_{p-1}$ by

$$d_p^D([\sigma^p]) = [\sigma_1^p \setminus \{\alpha_1\}] + \sum_{i=1}^{p+1} [\sigma^p \setminus \{\alpha_i\}].$$

• For p=0, define $d_0^D: D_0 \to D_{-1}$ via $d_0^D([\{\alpha\}]) = \alpha$ for each $\alpha \in X_0$.

Differentials in **D**

- $\mathfrak{D}_p \triangleq \mathsf{Span}_{\mathbb{Z}_2}\{[\sigma^p] \mid \sigma^p \in X(\mathbb{Z}_2^n), |\sigma^p| = p+1\}, p = 0, 1, \cdots, n-1;$
- $\mathfrak{D}_{-1} \triangleq \mathbb{Z}_2^n \langle \emptyset \rangle$:
- $\mathfrak{D}_n \triangleq 0$, otherwise.
- For $p \in [n-1]$, set $d_n^D : \mathfrak{D}_n \to \mathfrak{D}_{n-1}$ by

$$d_p^D([\sigma^p]) = [\sigma_1^p \setminus \{\alpha_1\}] + \sum_{i=1}^{p+1} [\sigma^p \setminus \{\alpha_i\}].$$

- For p=0, define $d_0^D: D_0 \to D_{-1}$ via $d_0^D([\{\alpha\}]) = \alpha$ for each $\alpha \in X_0$.
- $d_{n-1}^D \circ d_n^D = 0$. Hence (\mathfrak{D}, d^D) is a chain complex.

Construction of B

- $\mathfrak{D} \otimes \mathfrak{C}$, the tensor product of two chain complex is also a chain complex.
- $\bullet \ \mathsf{Set} \ B_{p,q} = \mathsf{Span}\{[\sigma^p] \otimes \sigma^q \ | \ \sigma^q \in \mathsf{Lk}\sigma^p\} \subseteq \mathfrak{D}_p \otimes \mathfrak{C}_q.$

Construction of B

- $\mathfrak{D} \otimes \mathfrak{C}$, the tensor product of two chain complex is also a chain complex.
- Set $B_{p,q} = \mathsf{Span}\{[\sigma^p] \otimes \sigma^q \mid \sigma^q \in \mathsf{Lk}\sigma^p\} \subseteq \mathfrak{D}_p \otimes \mathfrak{C}_q$.
- \mathfrak{B} is defined to be the total complex of the double complex $\{B_{*,*}\}$.

Construction of B

- $\mathfrak{D} \otimes \mathfrak{C}$, the tensor product of two chain complex is also a chain complex.
- Set $B_{p,q} = \mathsf{Span}\{[\sigma^p] \otimes \sigma^q \mid \sigma^q \in \mathsf{Lk}\sigma^p\} \subseteq \mathfrak{D}_p \otimes \mathfrak{C}_q$.
- \mathfrak{B} is defined to be the total complex of the double complex $\{B_{*,*}\}$.
- The top chain group \mathfrak{B}_{n-2} is isomorphic(via the dualization D) to the linear space $\bar{\mathcal{F}}_{n+1}$ generated by faithful representations.
- the sequence

$$0 \longrightarrow \mathcal{Z}_{n+1}(\mathbb{Z}_2^n) \overset{\phi_{n+1}}{\cong} \operatorname{Im} \ \phi_{n+1} \hookrightarrow \bar{\mathcal{F}}_{n+1} \overset{D}{\cong} \mathfrak{B}_{n-2} \overset{\partial_{n-2}}{\longrightarrow} \mathfrak{B}_{n-3}$$

is exact.

The double complex $(B_{*,*}, d_*^D \otimes 1, 1 \otimes d_*^C)$

Page E^0 :

n-1	0	0	0	 0	0
n-2	$\mathbb{Z}_2^n \otimes C_{n-2}$	$B_{0,n-2}$	0	 0	0
n-3	$\mathbb{Z}_2^n \otimes C_{n-3}$		$B_{1,n-3}$	 0	0
0	$\mathbb{Z}_2^n\otimes C_0$	$B_{0,0}$	$B_{1,0}$	 $B_{n-2,0}$	0
-1	$\mathbb{Z}_2^n\otimes\mathbb{Z}_2$	$D_0\otimes \mathbb{Z}_2$	$D_1\otimes \mathbb{Z}_2$	 $D_{n-2}\otimes \mathbb{Z}_2$	$D_{n-1}\otimes \mathbb{Z}_2$
(p,q)	-1	0	1	 n-2	n-1

The double complex $(B_{*,*}, d^D_* \otimes 1, 1 \otimes d^C_*)$

Page E^0 :

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline \dots & & & & \dots & & \\ \hline n-1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \hline n-2 & \mathbb{Z}_2^n \otimes C_{n-2} & B_{0,n-2} & 0 & \cdots & 0 & 0 \\ \hline n-3 & \mathbb{Z}_2^n \otimes C_{n-3} & B_{0,n-3} & B_{1,n-3} & \cdots & 0 & 0 \\ \hline \dots & & & & & \dots & \\ \hline 0 & \mathbb{Z}_2^n \otimes C_0 & B_{0,0} & B_{1,0} & \cdots & B_{n-2,0} & 0 \\ \hline -1 & \mathbb{Z}_2^n \otimes \mathbb{Z}_2 & D_0 \otimes \mathbb{Z}_2 & D_1 \otimes \mathbb{Z}_2 & \cdots & D_{n-2} \otimes \mathbb{Z}_2 & D_{n-1} \otimes \mathbb{Z}_2 \\ \hline \hline (p,q) & -1 & 0 & 1 & \cdots & n-2 & n-1 \\ \hline \end{array}$$

• $1 \otimes d_q^C : B_{p,q} \to B_{p,q-1}$.

The double complex $(B_{*,*}, d_*^D \otimes 1, 1 \otimes d_*^C)$

Page E^0 :

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \dots & & & & \dots & & \\ \hline n-1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \hline n-2 & \mathbb{Z}_2^n \otimes C_{n-2} & B_{0,n-2} & 0 & \cdots & 0 & 0 \\ \hline n-3 & \mathbb{Z}_2^n \otimes C_{n-3} & B_{0,n-3} & B_{1,n-3} & \cdots & 0 & 0 \\ \hline \dots & & & & & \dots & \\ \hline 0 & \mathbb{Z}_2^n \otimes C_0 & B_{0,0} & B_{1,0} & \cdots & B_{n-2,0} & 0 \\ \hline -1 & \mathbb{Z}_2^n \otimes \mathbb{Z}_2 & D_0 \otimes \mathbb{Z}_2 & D_1 \otimes \mathbb{Z}_2 & \cdots & D_{n-2} \otimes \mathbb{Z}_2 & D_{n-1} \otimes \mathbb{Z}_2 \\ \hline \hline (p,q) & -1 & 0 & 1 & \cdots & n-2 & n-1 \\ \hline \end{array}$$

- $1 \otimes d_q^C : B_{p,q} \to B_{p,q-1}$.
- $\bullet \ B_{p,q} = \operatorname{Span}\{[\sigma^p] \otimes \omega^q \ | \ \omega^q \in \operatorname{Lk}\sigma^p\} = \bigoplus_{[\sigma^p]} C_q(\operatorname{Lk} \sigma^p).$

The double complex $(B_{*,*}, d_*^D \otimes 1, 1 \otimes d_*^C)$

Page E^0 :

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \dots & & & & \dots & & \\ \hline n-1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \hline n-2 & \mathbb{Z}_2^n \otimes C_{n-2} & B_{0,n-2} & 0 & \cdots & 0 & 0 \\ \hline n-3 & \mathbb{Z}_2^n \otimes C_{n-3} & B_{0,n-3} & B_{1,n-3} & \cdots & 0 & 0 \\ \hline \dots & & & & & \dots & \\ \hline 0 & \mathbb{Z}_2^n \otimes C_0 & B_{0,0} & B_{1,0} & \cdots & B_{n-2,0} & 0 \\ \hline -1 & \mathbb{Z}_2^n \otimes \mathbb{Z}_2 & D_0 \otimes \mathbb{Z}_2 & D_1 \otimes \mathbb{Z}_2 & \cdots & D_{n-2} \otimes \mathbb{Z}_2 & D_{n-1} \otimes \mathbb{Z}_2 \\ \hline \hline (p,q) & -1 & 0 & 1 & \cdots & n-2 & n-1 \\ \hline \end{array}$$

- $1 \otimes d_q^C : B_{p,q} \to B_{p,q-1}$.
- $\bullet \ B_{p,q} = \operatorname{Span}\{[\sigma^p] \otimes \omega^q \ | \ \omega^q \in \operatorname{Lk}\sigma^p\} = \bigoplus_{[\sigma^p]} C_q(\operatorname{Lk} \sigma^p).$
- Lk $\sigma^p \simeq (\bigvee S^{n-p-2})^{A_{p,n}}$.

First page of the spectral sequence

E^1 Page:

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \dots & & & \dots & & \dots & & \\ \hline n-1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ n-2 & E^1_{-1,n-2} & E^1_{0,n-2} & 0 & \cdots & 0 & 0 \\ n-3 & 0 & 0 & E^1_{1,n-3} & \cdots & 0 & 0 \\ \dots & & & & \dots & & \\ \hline 0 & 0 & 0 & 0 & \cdots & E^1_{n-2,0} & 0 \\ -1 & 0 & 0 & 0 & \cdots & 0 & D_{n-1} \otimes \mathbb{Z}_2 \\ \hline (p,q) & -1 & 0 & 1 & \cdots & n-2 & n-1 \\ \hline \end{array}$$

- $E_{-1,n-2} = \mathbb{Z}_2^n \otimes \ker d_{n-2}^C = \mathbb{Z}_2^n \otimes \operatorname{Im} d_{n-1}^C$;
- $E_{p,n-2-p} = \bigoplus_{[\sigma^p]} H_{n-2-p}(\mathsf{Lk} \ \sigma^p; \mathbb{Z}_2), p = 0, 1, \cdots, n-2.$
- There is only one nontrivial differential $d_1 = d_0^D \otimes 1 : E_{0,n-2}^1 \to E_{-1,n-2}^1$.

Second page of the spectral sequence

E^2 Page:

n-1	0	0	0		0	0
n-2	coker d_1	$\ker d_1$	0		0	0
n-3	0	0	$E_{1,n-3}^{1}$	• • •	0	0
0	0	0	0	• • •	$E_{n-2,0}^{1}$	0
-1	0	0	0	• • •	0	$D_{n-1}\otimes \mathbb{Z}_2$
(p,q)	-1	0	1	• • •	n-2	n-1

Second page of the spectral sequence

E^2 Page:

n	-1	0	0	0		0	0
n	-2	coker d_1	$\ker d_1$	0		0	0
n	-3	0	0	$E_{1,n-3}^1$		0	0
	0	0	0	0		$E_{n-2,0}^{1}$	0
	-1	0	0	0	• • •	0	$D_{n-1}\otimes \mathbb{Z}_2$
(1	(p,q)	-1	0	1	• • •	n-2	n-1

proposition

The only one nontrivial differential $d_2:E^1_{1,n-3} \to \operatorname{coker} d_1$ is surjective.

Dimension computation: Spectral sequence

E^3 Page:

n-1	0	0	0	0		0	0
n-2	0	$\ker d_1$	0	0		0	0
n-3	0	0	$\ker d_2$	0		0	0
n-4	0	0	0	$E_{2,n-4}^{1}$	• • •	0	0
0	0	0	0	0		$E_{n-2,0}^{1}$	0
-1	0	0	0	0	• • •	0	$D_{n-1}\otimes \mathbb{Z}_2$
(p,q)	-1	0	1	2	• • •	n-2	n-1

Dimension formula

${ m Theorem}$

$$\dim \mathcal{Z}_{n+1}(\mathbb{Z}_2^n) = A_{0,n} \cdot f_0 + \sum_{p=1}^{n-2} \frac{A_{p,n} \cdot f_p}{p+2} - (n - \frac{1}{n+1})f_{n-1} + n \cdot A_n$$

where
$$A_1=0, A_{0,1}=0, f_p=\frac{\prod_{k=0}^p(2^n-2^k)}{(p+1)!}$$
 for $p\geq 0$, $A_n=(-1)^n+\sum\limits_{i=0}^{n-1}(-1)^{n-1-i}f_i$ for $n>1$, and

n>1. and

$$A_{p,n} = (-1)^{n-p-1} + \sum_{i=0}^{n-p-2} (-1)^{n-p-i} \frac{\prod_{j=0}^{i} (2^n - 2^{p+j+1})}{(i+1)!}, n > 1, 0 \le p \le n-2.$$

Further discussion

The trick on $\mathcal{Z}_m(\mathbb{Z}_2^n)$

- For $\mathcal{Z}_{n+2}(\mathbb{Z}_2^n)$: We have recently dualized the LLS for this case. The description is significantly much more complex than that for $\mathcal{Z}_{n+1}(\mathbb{Z}_2^n)$.
- It appears difficult to extend this trick to the general case.
- The primary reason is the rapidly growing complexity of the linear relationships as m-n increases.

(P3)

Seek specific manifolds for equivariant bordism classes in $\mathcal{Z}_{n+1}(\mathbb{Z}_2^n)$.

Thanks for your attention!

bobchen@hust.edu.cn

References

- P. E. Conner and E. E. Floyd, *Differentiable periodic maps*, Springer-Verlag, Berlin, 1964.
- R. E. Stong, *Equivariant bordism and* \mathbb{Z}_2^k -actions, Duke Math. J. **37** (1970), 779–785.
- B. Chen, Z. Lü and Q. B. Tan, *Equivariant geometric bordisms and universal complexes*. Proc. Am. Math. Soc. **153** (2025), 2687–2699.
- H. Li, Z. Lü and Q.F. Shen, Equivariant geometric bordism, representations and labelled graphs. arXiv:2501.06565